In this paper we study the behaviour of the Neumann data of Dirichlet eigenfunctions on simplices. We prove that the L-2 norm of the (semi-classical) Neumann data on each face is equal to 2/n times the (n - 1)-dimensional volume of the face divided by the volume of the simplex. This is a generalization of [2] to higher dimensions. Again it is not an asymptotic, but an exact formula. The proof is by simple integrations by parts and linear algebra. We also consider the following inverse problem: do the norms of the Neumann data on a simplex determine a constant coefficient elliptic operator? The answer is yes in dimension 2 and no in higher dimensions.
机构:
Univ Grenoble Alpes, Lab Jean Kuntzmann, UMR CNRS 5224, 700 Ave Cent, F-38401 St Martin Dheres, FranceUniv Grenoble Alpes, Lab Jean Kuntzmann, UMR CNRS 5224, 700 Ave Cent, F-38401 St Martin Dheres, France
Triki, Faouzi
Yin, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comput, Beijing 100190, Peoples R ChinaUniv Grenoble Alpes, Lab Jean Kuntzmann, UMR CNRS 5224, 700 Ave Cent, F-38401 St Martin Dheres, France
机构:
Univ Paris Saclay, Univ Paris 11, CNRS, Lab Rech Informat,TAO INRIA, Bat 660, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, Univ Paris 11, CNRS, Lab Rech Informat,TAO INRIA, Bat 660, F-91190 Gif Sur Yvette, France
Decelle, Aurelien
Ricci-Tersenghi, Federico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Fis, Ist Nazl Fis Nucl, Sez Roma1, Piazzale Aldo Moro 5, I-00185 Rome, Italy
Univ Roma La Sapienza, CNR Nanotec, I-00185 Rome, ItalyUniv Paris Saclay, Univ Paris 11, CNRS, Lab Rech Informat,TAO INRIA, Bat 660, F-91190 Gif Sur Yvette, France
Ricci-Tersenghi, Federico
Zhang, Pan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Theoret Phys, Zhong Guan Cun Dong Lu 55, Beijing 100190, Peoples R ChinaUniv Paris Saclay, Univ Paris 11, CNRS, Lab Rech Informat,TAO INRIA, Bat 660, F-91190 Gif Sur Yvette, France