Equidistribution of Neumann data mass on simplices and a simple inverse problem

被引:2
|
作者
Christianson, Hans [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
QUANTUM ERGODIC RESTRICTION; EIGENFUNCTIONS;
D O I
10.4310/MRL.2019.v26.n2.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the behaviour of the Neumann data of Dirichlet eigenfunctions on simplices. We prove that the L-2 norm of the (semi-classical) Neumann data on each face is equal to 2/n times the (n - 1)-dimensional volume of the face divided by the volume of the simplex. This is a generalization of [2] to higher dimensions. Again it is not an asymptotic, but an exact formula. The proof is by simple integrations by parts and linear algebra. We also consider the following inverse problem: do the norms of the Neumann data on a simplex determine a constant coefficient elliptic operator? The answer is yes in dimension 2 and no in higher dimensions.
引用
收藏
页码:421 / 445
页数:25
相关论文
共 50 条
  • [31] Asymptotical Behaviors for Neumann Boundary Problem with Singular Data
    Tao ZHANG
    Chun Qin ZHOU
    Acta Mathematica Sinica,English Series, 2019, (04) : 463 - 480
  • [32] MULTIPLE SOLUTIONS FOR A NULL MASS NEUMANN PROBLEM IN EXTERIOR DOMAINS
    Furtado, Marcelo F.
    Maia, Liliane A.
    Medeiros, Everaldo S.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (1-2) : 181 - 199
  • [33] High Order Approximation of the Inverse Elliptic Problem with Dirichlet-Neumann Conditions
    Ashyralyyev, Charyyar
    FILOMAT, 2014, 28 (05) : 947 - 962
  • [34] Dirichlet-Neumann inverse spectral problem for a star graph of Stieltjes strings
    Pivovarchik, Vyacheslav
    Rozhenko, Natalia
    Tretter, Christiane
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (08) : 2263 - 2292
  • [35] An Inverse Gravimetric Problem with GOCE Data
    Reguzzoni, M.
    Sampietro, D.
    GRAVITY, GEOID AND EARTH OBSERVATION, 2010, 135 : 451 - 456
  • [36] An inverse elastodynamic data reconstruction problem
    Borachok, Ihor
    Chapko, Roman
    Johansson, B. Tomas
    JOURNAL OF ENGINEERING MATHEMATICS, 2022, 134 (01)
  • [37] INVERSE CONDUCTIVITY PROBLEM WITH INTERNAL DATA
    Triki, Faouzi
    Yin, Tao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03): : 483 - 502
  • [38] Data quality for the inverse Ising problem
    Decelle, Aurelien
    Ricci-Tersenghi, Federico
    Zhang, Pan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (38)
  • [39] THE INVERSE EIGENVALUE PROBLEM WITH FINITE DATA
    BARNES, DC
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) : 732 - 753
  • [40] An inverse problem with data on the part of the boundary
    Ramm, A. G.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) : 534 - 538