Equidistribution of Neumann data mass on simplices and a simple inverse problem

被引:2
|
作者
Christianson, Hans [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
QUANTUM ERGODIC RESTRICTION; EIGENFUNCTIONS;
D O I
10.4310/MRL.2019.v26.n2.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the behaviour of the Neumann data of Dirichlet eigenfunctions on simplices. We prove that the L-2 norm of the (semi-classical) Neumann data on each face is equal to 2/n times the (n - 1)-dimensional volume of the face divided by the volume of the simplex. This is a generalization of [2] to higher dimensions. Again it is not an asymptotic, but an exact formula. The proof is by simple integrations by parts and linear algebra. We also consider the following inverse problem: do the norms of the Neumann data on a simplex determine a constant coefficient elliptic operator? The answer is yes in dimension 2 and no in higher dimensions.
引用
收藏
页码:421 / 445
页数:25
相关论文
共 50 条
  • [21] Inverse problem for a degenerate/singular parabolic system with Neumann boundary conditions
    Alaoui, Mohammed
    Hajjaj, Abdelkarim
    Maniar, Lahcen
    Salhi, Jawad
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06): : 791 - 821
  • [22] Inverse Problem for Source Function in Parabolic Equation at Neumann Boundary Conditions
    Andreev, Victor K.
    Stepanova, Irina, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (04): : 445 - 451
  • [23] Inverse Problem of Heat and Mass Transfer
    Bilchenko, Grigory
    Bilchenko, Natalya
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE STABILITY AND OSCILLATIONS OF NONLINEAR CONTROL SYSTEMS (PYATNITSKIY'S CONFERENCE), 2016,
  • [24] Inverse eigenvalue problem for a simple star graph
    Rundell, William
    Sacks, Paul
    JOURNAL OF SPECTRAL THEORY, 2015, 5 (02) : 363 - 380
  • [25] A simple algorithm for the inverse field of values problem
    Carden, Russell
    INVERSE PROBLEMS, 2009, 25 (11)
  • [26] A simple inverse problem in solitonic chain deformations
    Ferrer, R
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (08): : 1588 - 1597
  • [27] On an inverse logarithmic potential problem for a point mass model using data on restricted boundary
    Ohe, T
    Ohnaka, K
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (04) : 2209 - 2214
  • [28] Asymptotical Behaviors for Neumann Boundary Problem with Singular Data
    Zhang, Tao
    Zhou, Chun Qin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (04) : 463 - 480
  • [29] Asymptotical Behaviors for Neumann Boundary Problem with Singular Data
    Tao ZHANG
    Chun Qin ZHOU
    ActaMathematicaSinica, 2019, 35 (04) : 463 - 480
  • [30] Asymptotical Behaviors for Neumann Boundary Problem with Singular Data
    Tao Zhang
    Chun Qin Zhou
    Acta Mathematica Sinica, English Series, 2019, 35 : 463 - 480