VC dimension bounds for higher-order neurons

被引:0
|
作者
Schmitt, M [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Lehrstuhl Math & Informat, D-44780 Bochum, Germany
来源
NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2 | 1999年 / 470期
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the sample complexity for learning using higher-order neurons. We calculate upper and lower bounds on the Vapnik-Chervonenkis dimension and the pseudo dimension for higher-order neurons that allow unrestricted interactions among the input variables. In particular, we show that the degree of interaction is irrelevant for the VC dimension and that the individual degree of the variables plays only a minor role. Further, our results reveal that the crucial parameters that affect the VC dimension of higher-order neurons are the input dimension and the maximum number of occurrences of each variable. The lower bounds that we establish are asymptotically almost tight. In particular, they show that the VC dimension in super-linear in the input dimension. Bounds for higher-order neurons with sigmoidal activation function are also derived.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 50 条
  • [41] GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons
    Liang, Liang
    Li, Yulong
    Potter, Christopher J.
    Yizhar, Ofer
    Deisseroth, Karl
    Tsien, Richard W.
    Luo, Liqun
    NEURON, 2013, 79 (05) : 917 - 931
  • [42] Optimal Order Quadrature Error Bounds for Infinite-Dimensional Higher-Order Digital Sequences
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (02) : 433 - 458
  • [43] Optimal Order Quadrature Error Bounds for Infinite-Dimensional Higher-Order Digital Sequences
    Takashi Goda
    Kosuke Suzuki
    Takehito Yoshiki
    Foundations of Computational Mathematics, 2018, 18 : 433 - 458
  • [44] Uncertainty Bounds on Higher-Order FRFs from Gaussian Process NARX Models
    Worden, Keith
    Surace, Cecilia
    Becker, William
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 1994 - 2000
  • [45] Improved Alpha-Information Bounds for Higher-Order Masked Cryptographic Implementations
    Liu, Yi
    Beguinot, Julien
    Cheng, Wei
    Guilley, Sylvain
    Masure, Loic
    Rioul, Olivier
    Standaert, Francois-Xavier
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 81 - 86
  • [46] Obtaining tight bounds on higher-order interferences with a 5-path interferometer
    Kauten, Thomas
    Keil, Robert
    Kaufmann, Thomas
    Pressl, Benedikt
    Brukner, Caslav
    Weihs, Gregor
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [47] Higher-Order Averaging, Formal Series and Numerical Integration III: Error Bounds
    P. Chartier
    A. Murua
    J. M. Sanz-Serna
    Foundations of Computational Mathematics, 2015, 15 : 591 - 612
  • [48] Gaussian bounds for higher-order elliptic differential operators with Kato type potentials
    Deng, Qingquan
    Ding, Yong
    Yao, Xiaohua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 5377 - 5397
  • [49] Higher-Order Averaging, Formal Series and Numerical Integration III: Error Bounds
    Chartier, P.
    Murua, A.
    Sanz-Serna, J. M.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 591 - 612