VC dimension bounds for higher-order neurons

被引:0
|
作者
Schmitt, M [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Lehrstuhl Math & Informat, D-44780 Bochum, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the sample complexity for learning using higher-order neurons. We calculate upper and lower bounds on the Vapnik-Chervonenkis dimension and the pseudo dimension for higher-order neurons that allow unrestricted interactions among the input variables. In particular, we show that the degree of interaction is irrelevant for the VC dimension and that the individual degree of the variables plays only a minor role. Further, our results reveal that the crucial parameters that affect the VC dimension of higher-order neurons are the input dimension and the maximum number of occurrences of each variable. The lower bounds that we establish are asymptotically almost tight. In particular, they show that the VC dimension in super-linear in the input dimension. Bounds for higher-order neurons with sigmoidal activation function are also derived.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 50 条
  • [21] Multiorder neurons for evolutionary higher-order clustering and growth
    Ramanathan, Kiruthika
    Guan, Sheng-Uei
    NEURAL COMPUTATION, 2007, 19 (12) : 3369 - 3391
  • [22] Interpretable Visualization and Higher-Order Dimension Reduction for ECoG Data
    Geyer, Kelly
    Campbell, Frederick
    Chang, Andersen
    Magnotti, John
    Beauchamp, Michael
    Allen, Genevera, I
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2664 - 2673
  • [23] Beyond Dimension two: A Test for Higher-Order Tail Risk
    Bormann, Carsten
    Schaumburg, Julia
    Schienle, Melanie
    JOURNAL OF FINANCIAL ECONOMETRICS, 2016, 14 (03) : 552 - 580
  • [24] HIGHER-ORDER DIAGRAMS IN QUANTUM GRAVITY AND CONTINUOUS DIMENSION METHOD
    CAPPER, DM
    LEIBBRAND, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (06) : 795 - 797
  • [25] Higher-order generalized hydrodynamics in one dimension: The noninteracting test
    Fagotti, Maurizio
    PHYSICAL REVIEW B, 2017, 96 (22)
  • [26] VC dimension bounds for analytic algebraic computations
    Montana, Jose Luis
    Pardo, Luis Miguel
    Callau, Mar
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 62 - 71
  • [27] VC dimension bounds for product unit networks
    Schmitt, M
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 165 - 170
  • [28] ON THE PRACTICAL APPLICABILITY OF VC-DIMENSION BOUNDS
    HOLDEN, SB
    NIRANJAN, M
    NEURAL COMPUTATION, 1995, 7 (06) : 1265 - 1288
  • [29] Higher-Order Bandwidth Bounds for Conductor-Backed Planar Arrays
    Chang, Hsieh-Chi
    Kwon, Do-Hoon
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 921 - 922
  • [30] A PRIORI BOUNDS FOR GLOBAL SOLUTIONS OF HIGHER-ORDER SEMILINEAR PARABOLIC PROBLEMS
    Ruixiang, Xing
    Hongjing, Pan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 21 (03): : 221 - 233