Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials

被引:34
|
作者
Billaud, Juliette [1 ]
Sheptyakov, Denis [2 ]
Sallard, Sebastien [1 ,3 ]
Leanza, Daniela [1 ]
Talianker, Michael [4 ]
Grinblat, Judith [5 ]
Sclar, Hadar [5 ]
Aurbach, Doron [5 ]
Novak, Petr [1 ]
Villevieille, Claire [1 ]
机构
[1] Paul Scherrer Inst, Energy & Environm Res Div, CH-5232 Villigen, Switzerland
[2] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[3] Flemish Inst Technol Res VITO, Bat MAT,Boeretang 200, B-2400 Mol, Belgium
[4] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
[5] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
SITU X-RAY; LAYERED OXIDES; CYCLING STABILITY; ANIONIC REDOX; LITHIUM BATTERIES; OXYGEN RELEASE; ELECTRODES; CAPACITY; SURFACE; LI2MNO3;
D O I
10.1039/c9ta00399a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich nickel cobalt manganese (NCM) oxides are among the most promising cathode materials for lithium-ion batteries owing to their high specific charges and operating voltages. However, their crystal structures are unstable upon prolonged cycling, leading to a collapse of their electrochemical performance. In this study, we investigated Fe doping of Li-rich NCM materials and explored various Li/Fe ratios. Compared with the reference Li-rich NCM material, the Li-1.16(Ni0.18Co0.10Mn0.52Fe0.02)O-2 composition exhibited a higher specific charge, potential drop mitigation at fast cycling rates, and an enhanced rate capability. At a rate of 4C, this composition exhibited a specific charge of 150 mA h g(-1), which was as much as 50% higher than that of the reference (100 mA h g(-1)). Neutron and X-ray diffraction data for compounds with different Fe doping concentrations indicated that the crystallographic structure was preserved with up to 2 mol% Fe without the formation of separate impurity phases. Furthermore, we found that the crystal structure of this Fe-doped material was less susceptible to the effects of prolonged cycling than the reference compound. Complementary investigations with X-ray photoelectron spectroscopy revealed that Fe was electrochemically active in the structure, which explains the beneficial effects observed with Fe doping of Li-rich NCM materials, such as an increased specific charge and more stable cycling.
引用
收藏
页码:15215 / 15224
页数:10
相关论文
共 50 条
  • [41] Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance
    Cui, Hongfu
    Yin, Chong
    Xia, Yonggao
    Wei, Chenggang
    Jiang, Wei
    Sun, Jie
    Qiu, Bao
    Zhu, Mingyuan
    Liu, Zhaoping
    CERAMICS INTERNATIONAL, 2019, 45 (12) : 15097 - 15107
  • [42] Correction to: Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials
    Shiyi Deng
    Yongxiang Chen
    Georgios Kolliopoulos
    Vladimiros G. Papangelakis
    Yunjiao Li
    Ionics, 2020, 26 : 4213 - 4213
  • [43] Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4
    Wang, Zhiyuan
    Luo, Shaohua
    Ren, Jie
    Wang, Dan
    Qi, Xiwei
    APPLIED SURFACE SCIENCE, 2016, 370 : 437 - 444
  • [44] Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials
    Zhao, Yujuan
    Xia, Minghua
    Hu, Xinsa
    Zhao, Zongkui
    Wang, Yang
    Lv, Zhi
    ELECTROCHIMICA ACTA, 2015, 174 : 1167 - 1174
  • [45] Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
    Xie, Huixian
    Xiao, Jiacheng
    Chen, Hongyi
    Zhang, Boyang
    Hui, Kwun Nam
    Zhang, Shanqing
    Liu, Chenyu
    Luo, Dong
    Lin, Zhan
    AAPPS BULLETIN, 2024, 34 (01):
  • [46] Impact of Nickel Substitution into Model Li-Rich Oxide Cathode Materials for Li-Ion Batteries
    Ting, Michelle
    Burigana, Matthew
    Zhang, Leiting
    Finfrock, Y. Zou
    Trabesinger, Sigita
    Jonderian, Antranik
    McCalla, Eric
    CHEMISTRY OF MATERIALS, 2020, 32 (02) : 849 - 857
  • [47] Bismuth-doped Li-rich metal oxides as cathode materials for Li-ion batteries
    Cao, C. W.
    Leung, K. L.
    Chung, C. Y.
    Xi, L. J.
    BIOTECHNOLOGY, AGRICULTURE, ENVIRONMENT AND ENERGY, 2015, : 393 - 396
  • [48] Synthesis and electrochemical performance of the Li-rich cathode material Li1.17Ni0.12Co0.13Mn0.58O2 for lithium-ion batteries
    Popovich, A. A.
    Maximov, M. Yu.
    Silin, A. O.
    Novikov, P. A.
    Koshtyal, Yu. M.
    Rumyantsev, A. M.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2016, 89 (10) : 1607 - 1611
  • [50] Improved Electrochemical Performance of Li-Rich Cathode Materials via Spinel Li2MoO4 Coating
    Zhang, Shuhao
    Ye, Yun
    Chen, Zhaoxiong
    Lai, Qinghao
    Liu, Tie
    Wang, Qiang
    Yuan, Shuang
    MATERIALS, 2023, 16 (16)