Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials

被引:34
|
作者
Billaud, Juliette [1 ]
Sheptyakov, Denis [2 ]
Sallard, Sebastien [1 ,3 ]
Leanza, Daniela [1 ]
Talianker, Michael [4 ]
Grinblat, Judith [5 ]
Sclar, Hadar [5 ]
Aurbach, Doron [5 ]
Novak, Petr [1 ]
Villevieille, Claire [1 ]
机构
[1] Paul Scherrer Inst, Energy & Environm Res Div, CH-5232 Villigen, Switzerland
[2] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[3] Flemish Inst Technol Res VITO, Bat MAT,Boeretang 200, B-2400 Mol, Belgium
[4] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
[5] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
SITU X-RAY; LAYERED OXIDES; CYCLING STABILITY; ANIONIC REDOX; LITHIUM BATTERIES; OXYGEN RELEASE; ELECTRODES; CAPACITY; SURFACE; LI2MNO3;
D O I
10.1039/c9ta00399a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich nickel cobalt manganese (NCM) oxides are among the most promising cathode materials for lithium-ion batteries owing to their high specific charges and operating voltages. However, their crystal structures are unstable upon prolonged cycling, leading to a collapse of their electrochemical performance. In this study, we investigated Fe doping of Li-rich NCM materials and explored various Li/Fe ratios. Compared with the reference Li-rich NCM material, the Li-1.16(Ni0.18Co0.10Mn0.52Fe0.02)O-2 composition exhibited a higher specific charge, potential drop mitigation at fast cycling rates, and an enhanced rate capability. At a rate of 4C, this composition exhibited a specific charge of 150 mA h g(-1), which was as much as 50% higher than that of the reference (100 mA h g(-1)). Neutron and X-ray diffraction data for compounds with different Fe doping concentrations indicated that the crystallographic structure was preserved with up to 2 mol% Fe without the formation of separate impurity phases. Furthermore, we found that the crystal structure of this Fe-doped material was less susceptible to the effects of prolonged cycling than the reference compound. Complementary investigations with X-ray photoelectron spectroscopy revealed that Fe was electrochemically active in the structure, which explains the beneficial effects observed with Fe doping of Li-rich NCM materials, such as an increased specific charge and more stable cycling.
引用
收藏
页码:15215 / 15224
页数:10
相关论文
共 50 条
  • [31] Electrochemical characteristics of li-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 with different manganese raw materials
    Yin, Yanping
    Zhuang, Weidong
    Wang, Zhong
    Lu, Huaquan
    Lu, Shigang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2015, 39 (10): : 891 - 895
  • [32] Cation doping for enhanced layer spacing and electrochemical performance in Li-rich Mn-based lithium-ion cathode materials
    Wang, Jin-Yue
    Xie, Yu-Long
    Yang, Shang-Mei
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 967
  • [33] Enhanced electrochemical performance of La-doped Li-rich layered cathode material
    Wang, Meng
    Chen, Lin
    Liu, Meng
    Chen, Yunbo
    Gu, Yijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 848
  • [34] Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries
    Е. V. Makhonina
    L. S. Pechen
    V. V. Volkov
    А. М. Rumyantsev
    Yu. М. Koshtyal
    А. О. Dmitrienko
    Yu. А. Politov
    V. S. Pervov
    I. L. Eremenko
    Russian Chemical Bulletin, 2019, 68 : 301 - 312
  • [35] Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries
    Yan, Jianhua
    Liu, Xingbo
    Li, Bingyun
    RSC ADVANCES, 2014, 4 (108) : 63268 - 63284
  • [36] Enhanced electrochemical performance of Li-rich cathode material for lithium-ion batteries
    Xiao, Jun
    Li, Xiao
    Tang, Kaikai
    Long, Mengqi
    Chen, Jun
    Wang, Dandan
    Gao, Hong
    Liu, Hao
    SURFACE INNOVATIONS, 2022, 10 (02) : 119 - 127
  • [37] Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes
    Liu, Jianhong
    Chen, Hongyu
    Xie, Jiaona
    Sun, Zhaoqin
    Wu, Ningning
    Wu, Borong
    JOURNAL OF POWER SOURCES, 2014, 251 : 208 - 214
  • [38] Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries
    Makhonina, E., V
    Pechen, L. S.
    Volkov, V. V.
    Rumyantsev, A. M.
    Koshtyal, Yu M.
    Dmitrienko, A. O.
    Politov, Yu A.
    Pervov, V. S.
    Eremenko, I. L.
    RUSSIAN CHEMICAL BULLETIN, 2019, 68 (02) : 301 - 312
  • [39] Hybridizing Li@Mn6 and Sb@Ni6 superstructure units to tune the electrochemical performance of Li-rich layered oxides
    Li, Yiwei
    Xie, Lin
    Zheng, Ze
    Yin, Zu-Wei
    Li, Jianyuan
    Weng, Mouyi
    Liu, Jiajie
    Hu, Jiangtao
    Yang, Kai
    Qian, Guoyu
    Cao, Bo
    Li, Zhibo
    Xu, Shenyang
    Zhao, Wenguang
    Li, Shunning
    Sun, Junliang
    Zhang, Mingjian
    Pan, Feng
    NANO ENERGY, 2020, 77
  • [40] Roles of Mn and Ni in Li-rich Mn-Ni-Fe oxide cathodes
    Aryal, Shankar
    Kucuk, Kamil
    Timofeeva, Elena, V
    Segre, Carlo U.
    MATERIALS TODAY COMMUNICATIONS, 2021, 26