Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images

被引:11
|
作者
Kamal, Sarwar [1 ]
Chowdhury, Linkon [2 ]
Khan, Mohammad Ibrahim [2 ]
Ashour, Amira S. [3 ]
Tavares, Joao Manuel R. S. [4 ]
Dey, Nilanjan [5 ]
机构
[1] East West Univ, Dhaka, Bangladesh
[2] Chittagong Univ Engn & Technol, Chittagong, Bangladesh
[3] Tanta Univ, Fac Engn, Dept Elect & Elect Commun Engn, Tanta, Egypt
[4] Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovaca Engn Mecan & Engn Ind, Oporto, Portugal
[5] Techno India Coll Technol, Dept Informat Technol, Kolkata 740000, W Bengal, India
关键词
Hidden Markov model; Chapman Kolmogrov equation; Flood fill; Warshall algorithm; Tertiary structure; SECONDARY STRUCTURE PREDICTION; COMPUTATIONAL DESIGN; SEQUENCE ALIGNMENT; GENETIC ALGORITHM; FOLD RECOGNITION; SCORING MATRIX; PROBABILITIES; SEGMENTATION; SPECIFICITY; REDESIGN;
D O I
10.1016/j.compbiolchem.2017.04.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images' binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 50 条
  • [31] An improved hidden Markov model for transmembrane topology prediction
    Kahsay, RY
    Liao, L
    Gao, G
    ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 634 - 639
  • [32] Prediction of schizophrenia from activity data using hidden Markov model parameters
    Boeker, Matthias
    Hammer, Hugo L.
    Riegler, Michael A.
    Halvorsen, Pal
    Jakobsen, Petter
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (08): : 5619 - 5630
  • [33] Prediction of schizophrenia from activity data using hidden Markov model parameters
    Matthias Boeker
    Hugo L. Hammer
    Michael A. Riegler
    Pål Halvorsen
    Petter Jakobsen
    Neural Computing and Applications, 2023, 35 : 5619 - 5630
  • [34] A hidden Markov model for gene function prediction from sequential expression data
    Deng, XT
    Ali, H
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 670 - 671
  • [35] Optimal hidden Markov models for protein secondary structure prediction
    Shi, Ouyan
    Yang, Huiyun
    Yang, Jing
    Tian, Xin
    Gaojishu Tongxin/Chinese High Technology Letters, 2008, 18 (07): : 738 - 742
  • [36] Evolving Hidden Markov Models for protein secondary structure prediction
    Won, KJ
    Hamelryck, T
    Prügel-Bennett, A
    Krogh, A
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 33 - 40
  • [37] A Hidden Markov Model For Modeling and Extracting Vine Structure in Images
    Marin, Ricardo D. C.
    Green, Richard D.
    2015 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2015,
  • [38] Segmentation of objects in temporal images using the hidden Markov model
    Solomon, J
    Butman, JA
    Sood, A
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 585 - 588
  • [39] HMMeta: Protein Function Prediction using Hidden Markov Models
    Gbenro, Sola
    Hippe, Kyle
    Cao, Renzhi
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [40] URBAN AREAS CHARACTERIZATION FROM POLARIMETRIC SAR IMAGES USING HIDDEN MARKOV MODEL
    He, Wenju
    Jaeger, Marc
    Hellwich, Olaf
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2778 - 2781