URBAN AREAS CHARACTERIZATION FROM POLARIMETRIC SAR IMAGES USING HIDDEN MARKOV MODEL

被引:0
|
作者
He, Wenju [1 ]
Jaeger, Marc [1 ]
Hellwich, Olaf [1 ]
机构
[1] Berlin Univ Technol, Berlin, Germany
关键词
Hidden Markov Models; Synthetic aperture radar; Buildings; Subaperture;
D O I
10.1109/IGARSS.2009.5417397
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Scatterers in Synthetic Aperture Radar (SAR) images exhibit high dependence on scatterer-sensor orientations. This phenomenon is prevalent in urban areas This paper applies Hidden Markov Model (HMM) to characterize the dependence and model the variations with respect to orientation. Buildings in high resolution SAR images of urban areas are studied. Buildings regions are divided into several discrete classes according to their orientation angles. We model the variations of scatterers characteristics throughout the subapertures using HMM. Subapertures are generated using wavelet packet decomposition. The experimental results show that HMM is efficient in building detection and orientation angle identification. HMMs trained using different feature sets are investigated The evolution of scatterer states in subapertures are obtained from the HMM inference.
引用
下载
收藏
页码:2778 / 2781
页数:4
相关论文
共 50 条
  • [1] URBAN AREAS DETECTION USING POLARIMETRIC SAR IMAGES
    Azmedroub, Boussad
    Ouarzeddine, Mounira
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3227 - 3230
  • [2] MULTITEMPORAL POLARIMETRIC SAR IMAGES FOR URBAN AREAS
    Koeniguer, E. Colin
    Weissgerber, F.
    Trouve, N.
    Nicolas, J-M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 231 - 234
  • [3] Model-based processing of multifrequency polarimetric SAR images of urban areas
    Pellizzeri, TM
    Lombardo, P
    2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 47 - 51
  • [4] A framework for classification of urban areas using polarimetric SAR images integrating color features and statistical model
    Liu Hong-Ying
    Wang Shuang
    Wang Rong-Fang
    Shi Jun-Fei
    Zhang Er-Lei
    Yang Shu-Yuan
    Jiao Li-Cheng
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2016, 35 (04) : 398 - 406
  • [5] AN UNSUPERVISED HIDDEN MARKOV RANDOM FIELD BASED SEGMENTATION OF POLARIMETRIC SAR IMAGES
    Banerjee, Biplab
    De, Shaunak
    Manickam, Surendar
    Bhattacharya, Avik
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1536 - 1539
  • [6] An improved hidden Markov model classifier for SAR images
    Nilubol, C
    Mersereau, RM
    Smith, MJT
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VIII, 1999, 3720 : 113 - 122
  • [7] Extracting impervious surfaces from full polarimetric SAR images in different urban areas
    Attarchi, Sara
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4642 - 4661
  • [8] PHASE-DIFFERENCE CHARACTERISTICS OF URBAN AREAS IN POLARIMETRIC SAR IMAGES
    Lee, Kyung-Yup
    Kim, Youn-Soo
    Oh, Yisok
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 409 - 412
  • [9] Optimized classification approach for SAR images using hidden Markov chains model
    Yuan, L. H.
    Song, J. S.
    Xue, W. T.
    Zheng, Y. A.
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1899 - 1903
  • [10] Extraction of Urban Areas From Polarimetric SAR Imagery
    Azmedroub, Boussad
    Ouarzeddine, Mounira
    Souissi, Boularbah
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2583 - 2591