Devil's staircase in kinetically limited growth

被引:2
|
作者
Ackland, GJ
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.66.041605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The devil's staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a one-dimensional Ising model [P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982)] wherein long-range and short-range forces compete, and the periodicity of the gaps between minority species covers all rational values. In many physical cases, crystal growth proceeds by adding surface layers that have the lowest energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the equilibrium ground state via a devil's staircase traversing an infinity of intermediate phases. It would be extremely difficult to deduce the simple growth law based on measurement made on such a grown structure.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Discovery of electric devil's staircase in perovskite antiferroelectric
    Li, Zhenqin
    Fu, Zhengqian
    Cai, Henghui
    Hu, Tengfei
    Yu, Ziyi
    Luo, Yue
    Zhang, Linlin
    Yao, Heliang
    Chen, Xuefeng
    Zhang, Shujun
    Wang, Genshui
    Dong, Xianlin
    Xu, Fangfang
    SCIENCE ADVANCES, 2022, 8 (14):
  • [32] Multiple Devil's staircase in a discontinuous circle map
    X.-M. Wang
    Z.-J. Fang
    J.-F. Zhang
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 40 : 417 - 422
  • [33] Devil's staircase of incompressible electron states in a nanotube
    Novikov, DS
    PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [34] Hausdorff dimension of univoque sets and Devil's staircase
    Komornik, Vilmos
    Kong, Derong
    Li, Wenxia
    ADVANCES IN MATHEMATICS, 2017, 305 : 165 - 196
  • [35] Multiple Devil's staircase in a discontinuous circle map
    Wang, X. -M.
    Fang, Z. -J.
    Zhang, J. -F.
    EUROPEAN PHYSICAL JOURNAL D, 2006, 40 (03): : 417 - 422
  • [36] THE DUCK AND THE DEVIL: CANARDS ON THE STAIRCASE
    Guckenheimer, J.
    Ilyashenko, Yu.
    MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (01) : 27 - 47
  • [38] Circle maps and the Devil's staircase in a periodically perturbed Oregonator
    Brons, M
    Gross, P
    Bar-Eli, K
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (11): : 2621 - 2628
  • [39] Devil's staircase of topological Peierls insulators and Peierls supersolids
    Chanda, Titas
    Gonzalez-Cuadra, Daniel
    Lewenstein, Maciej
    Tagliacozzo, Luca
    Zakrzewski, Jakub
    SCIPOST PHYSICS, 2022, 12 (02): : 1 - 22
  • [40] Electric-induced devil's staircase in perovskite antiferroelectric
    Hu, Tengfei
    Fu, Zhengqian
    Li, Zhenqing
    Yu, Ziyi
    Zhang, Linlin
    Yao, Heliang
    Zeng, Kun
    Wu, Tiantian
    Han, Bing
    Chen, Xuefeng
    Wang, Genshui
    Xu, Fangfang
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (21)