Devil's staircase in kinetically limited growth

被引:2
|
作者
Ackland, GJ
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.66.041605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The devil's staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a one-dimensional Ising model [P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982)] wherein long-range and short-range forces compete, and the periodicity of the gaps between minority species covers all rational values. In many physical cases, crystal growth proceeds by adding surface layers that have the lowest energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the equilibrium ground state via a devil's staircase traversing an infinity of intermediate phases. It would be extremely difficult to deduce the simple growth law based on measurement made on such a grown structure.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Critical fields and devil's staircase in superconducting ladders
    Giles, RT
    Kusmartsev, FV
    PHYSICA B, 2000, 284 : 1850 - 1851
  • [22] Devil’s staircase behavior of a dimer adsorption model
    V. F. Fefelov
    V. A. Gorbunov
    A. V. Myshlyavtsev
    M. D. Myshlyavtseva
    S. S. Akimenko
    Adsorption, 2013, 19 : 495 - 499
  • [23] Decomposition of Lebesgue-Cantor devil's staircase
    Kolwankar, KM
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2004, 12 (04) : 375 - 380
  • [24] Flux, resonances and the devil's staircase for the sawtooth map
    Chen, Q.
    Meiss, J. D.
    NONLINEARITY, 1989, 2 (02) : 347 - 356
  • [25] Devil's staircase behavior of a dimer adsorption model
    Fefelov, V. F.
    Gorbunov, V. A.
    Myshlyavtsev, A. V.
    Myshlyavtseva, M. D.
    Akimenko, S. S.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2013, 19 (2-4): : 495 - 499
  • [26] The Maximal Function of the Devil's Staircase is Absolutely Continuous
    Gonzalez-Riquelme, Cristian
    Kosz, Dariusz
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [27] Magic Mountain and Devil's Staircase swapping problems
    Arimoto, S
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2000, 27 (03) : 213 - 217
  • [28] Possible devil's staircase in the Kondo lattice CeSbSe
    Chen, K. -W.
    Lai, Y.
    Chiu, Y. -C.
    Steven, S.
    Besara, T.
    Graf, D.
    Siegrist, T.
    Albrecht-Schmitt, T. E.
    Balicas, L.
    Baumbach, R. E.
    PHYSICAL REVIEW B, 2017, 96 (01)
  • [29] Magic Mountain and Devil's Staircase swapping problems
    Shigeru Arimoto
    Journal of Mathematical Chemistry, 2000, 27 : 213 - 217
  • [30] Devil's staircase in the magnetoresistance of a periodic array of scatterers
    Wiersig, J
    Ahn, KH
    PHYSICAL REVIEW LETTERS, 2001, 87 (02) : 026803/1 - 026803/4