In silico prediction of mitochondrial toxicity of chemicals using machine learning methods

被引:18
|
作者
Zhao, Piaopiao [1 ]
Peng, Yayuan [1 ]
Xu, Xuan [1 ]
Wang, Zhiyuan [1 ]
Wu, Zengrui [1 ]
Li, Weihua [1 ]
Tang, Yun [1 ]
Liu, Guixia [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai Key Lab New Drug Design, Sch Pharm, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
applicability domain; computational toxicology; machine learning; mitochondrial toxicity; structural alert; INHIBITION; IMPAIRMENT; METABOLISM; MECHANISMS;
D O I
10.1002/jat.4141
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Mitochondria are important organelles in human cells, providing more than 95% of the energy. However, some drugs and environmental chemicals could induce mitochondrial dysfunction, which might cause complex diseases and even worsen the condition of patients with mitochondrial damage. Some drugs have been withdrawn from the market due to their severe mitochondrial toxicity, such as troglitazone. Therefore, there is an urgent need to develop models that could accurately predict the mitochondrial toxicity of chemicals. In this paper, suitable data were obtained from literature and databases first. Then nine types of fingerprints were used to characterize these compounds. Finally, different algorithms were used to build models. Meanwhile, the applicability domain of the prediction models was defined. We have also explored the structural alerts of mitochondrial toxicity, which would be helpful for medicinal chemists to better predict mitochondrial toxicity and further optimize lead compounds.
引用
收藏
页码:1518 / 1526
页数:9
相关论文
共 50 条
  • [41] In Silico Prediction and Screening of γ-Secretase Inhibitors by Molecular Descriptors and Machine Learning Methods
    Yang, Xue-Gang
    Lv, Wei
    Chen, Yu-Zong
    Xue, Ying
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (06) : 1249 - 1258
  • [42] In silico Prediction of Inhibitory Constant of Thrombin Inhibitors using Machine Learning
    Zhao, Junnan
    Zhu, Lu
    Zhou, Weineng
    Yin, Lingfeng
    Wang, Yuchen
    Fan, Yuanrong
    Chen, Yadong
    Liu, Haichun
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2018, 21 (09) : 662 - 669
  • [43] Water quality prediction using machine learning methods
    Haghiabi, Amir Hamzeh
    Nasrolahi, Ali Heidar
    Parsaie, Abbas
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2018, 53 (01): : 3 - 13
  • [44] Epileptic Seizures Prediction Using Machine Learning Methods
    Usman, Syed Muhammad
    Usman, Muhammad
    Fong, Simon
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [45] Discrete sequence prediction using machine learning methods
    Sharif, H
    Conner, M
    IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 1097 - 1101
  • [46] Prediction of cadmium content using machine learning methods
    Kececi, Mehmet
    Gokmen, Fatih
    Usul, Mustafa
    Koca, Celal
    Uygur, Veli
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (12)
  • [47] Flood Hydrograph Prediction Using Machine Learning Methods
    Tayfur, Gokmen
    Singh, Vijay P.
    Moramarco, Tommaso
    Barbetta, Silvia
    WATER, 2018, 10 (08)
  • [48] Prediction of Skin Penetration Using Machine Learning Methods
    Sun, Yi
    Moss, Gary P.
    Prapopoulou, Maria
    Adams, Rod
    Brown, Marc B.
    Davey, Neil
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 1049 - +
  • [49] CIN Classification and Prediction Using Machine Learning Methods
    Chirkina, Anastasia
    Medvedeva, Marina
    Komotskiy, Evgeny
    APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 1836
  • [50] Traffic Flow Prediction Using Machine Learning Methods
    Wang, Hainan
    Wei, Xuetong
    Yao, Junyuan
    Zhang, Yue
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 30 - 35