In silico prediction of mitochondrial toxicity of chemicals using machine learning methods

被引:18
|
作者
Zhao, Piaopiao [1 ]
Peng, Yayuan [1 ]
Xu, Xuan [1 ]
Wang, Zhiyuan [1 ]
Wu, Zengrui [1 ]
Li, Weihua [1 ]
Tang, Yun [1 ]
Liu, Guixia [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai Key Lab New Drug Design, Sch Pharm, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
applicability domain; computational toxicology; machine learning; mitochondrial toxicity; structural alert; INHIBITION; IMPAIRMENT; METABOLISM; MECHANISMS;
D O I
10.1002/jat.4141
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Mitochondria are important organelles in human cells, providing more than 95% of the energy. However, some drugs and environmental chemicals could induce mitochondrial dysfunction, which might cause complex diseases and even worsen the condition of patients with mitochondrial damage. Some drugs have been withdrawn from the market due to their severe mitochondrial toxicity, such as troglitazone. Therefore, there is an urgent need to develop models that could accurately predict the mitochondrial toxicity of chemicals. In this paper, suitable data were obtained from literature and databases first. Then nine types of fingerprints were used to characterize these compounds. Finally, different algorithms were used to build models. Meanwhile, the applicability domain of the prediction models was defined. We have also explored the structural alerts of mitochondrial toxicity, which would be helpful for medicinal chemists to better predict mitochondrial toxicity and further optimize lead compounds.
引用
收藏
页码:1518 / 1526
页数:9
相关论文
共 50 条
  • [21] In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts (vol 6, 30, 2018)
    Yang, Hongbin
    Sun, Lixia
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [22] Applications of Machine Learning Methods in Drug Toxicity Prediction
    Zhang, Li
    Zhang, Hui
    Ai, Haixin
    Hu, Huan
    Li, Shimeng
    Zhao, Jian
    Liu, Hongsheng
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (12) : 987 - 997
  • [23] In silico prediction of chemical neurotoxicity using machine learning
    Jiang, Changsheng
    Zhao, Piaopiao
    Li, Weihua
    Tang, Yun
    Liu, Guixia
    TOXICOLOGY RESEARCH, 2020, 9 (03) : 164 - 172
  • [24] In silico prediction of toxicity and its applications for chemicals at work
    Rim, Kyung-Taek
    TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES, 2020, 12 (03) : 191 - 202
  • [25] In silico prediction of toxicity and its applications for chemicals at work
    Kyung-Taek Rim
    Toxicology and Environmental Health Sciences, 2020, 12 : 191 - 202
  • [26] In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches
    Singh, Kunwar P.
    Gupta, Shikha
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2014, 275 (03) : 198 - 212
  • [27] In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches
    Xu, Minjie
    Yang, Hongbin
    Liu, Guixia
    Tang, Yun
    Li, Weihua
    JOURNAL OF APPLIED TOXICOLOGY, 2022, 42 (11) : 1766 - 1776
  • [28] In Silico prediction of inhibitors for multiple transporters via machine learning methods
    Duan, Hao
    Lou, Chaofeng
    Gu, Yaxin
    Wang, Yimeng
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    MOLECULAR INFORMATICS, 2024, 43 (03)
  • [29] In silico prediction of chemical aquatic toxicity for marine crustaceans via machine learning
    Liu, Lin
    Yang, Hongbin
    Cai, Yingchun
    Cao, Qianqian
    Sun, Lixia
    Wang, Zhuang
    Li, Weihua
    Liu, Guixia
    Lee, Philip W.
    Tang, Yun
    TOXICOLOGY RESEARCH, 2019, 8 (03) : 341 - 352
  • [30] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026