Constraining the warm dark matter particle mass with Milky Way satellites

被引:128
|
作者
Kennedy, Rachel [1 ]
Frenk, Carlos [1 ]
Cole, Shaun [1 ]
Benson, Andrew [2 ]
机构
[1] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England
[2] Carnegie Observ, Pasadena, CA 91101 USA
基金
美国国家科学基金会;
关键词
galaxies: dwarf; galaxies: formation; dark matter; GALAXY FORMATION; DWARF GALAXIES; HALO MASS; LUMINOSITY FUNCTION; STERILE NEUTRINOS; DENSITY PROFILE; COLD; EVOLUTION; ANDROMEDA; COSMOLOGY;
D O I
10.1093/mnras/stu719
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Particle physics theories predict the existence of particles (such as keV mass sterile neutrinos) which could behave as warm dark matter (WDM), producing a cutoff in the linear density power spectrum on the scale of dwarf galaxies. Thus, the abundance of Milky Way satellite galaxies depends on the mass of the warm particle and also scales with the mass of the host galactic halo. We use the galform semi-analytic model of galaxy formation to compare predicted satellite luminosity functions to Milky Way data and determine a lower bound on the thermally produced WDM particle mass. This depends strongly on the Milky Way halo mass and, to some extent, on the baryonic physics assumed. For our fiducial model, we find that for a particle mass of 3.3 keV (the 2 sigma lower limit from an analysis of the Lyman alpha forest by Viel et al.) the Milky Way halo mass is required to be > 1.4 x 10(12) M-aS (TM). For this same fiducial model, we also find that all WDM particle masses are ruled out (at 95 per cent confidence) if the Milky Way halo mass is smaller than 1.1 x 10(12) M-aS (TM), while if the mass of the Galactic halo is greater than 1.8 x 10(12) M-aS (TM), only WDM particle masses larger than 2 keV are allowed.
引用
收藏
页码:2487 / 2495
页数:9
相关论文
共 50 条
  • [31] CONSTRAINING WARM DARK MATTER MASS WITH COSMIC REIONIZATION AND GRAVITATIONAL WAVES
    Tan, Wei-Wei
    Wang, F. Y.
    Cheng, K. S.
    ASTROPHYSICAL JOURNAL, 2016, 829 (01):
  • [32] Constraining Sterile Neutrino Dark Matter in the Milky Way Halo with Swift-XRT
    Sicilian, Dominic
    Lopez, Dannell
    Moscetti, Massimo
    Bulbul, Esra
    Cappelluti, Nico
    ASTROPHYSICAL JOURNAL, 2022, 941 (01):
  • [33] The constraining effect of gas and the dark matter halo on the vertical stellar distribution of the Milky Way
    Sarkar, S.
    Jog, C. J.
    ASTRONOMY & ASTROPHYSICS, 2018, 617
  • [34] Diverse dark matter density at sub-kiloparsec scales in Milky Way satellites: Implications for the nature of dark matter
    Zavala, Jesus
    Lovell, Mark R.
    Vogelsberger, Mark
    Burger, Jan D.
    PHYSICAL REVIEW D, 2019, 100 (06)
  • [35] Constraining the Milky Way mass with hypervelocity stars
    Fragione, G.
    Loeb, A.
    NEW ASTRONOMY, 2017, 55 : 32 - 38
  • [36] A Dark Matter Disc in the Milky Way
    Read, J. I.
    Bruch, T.
    Baudis, L.
    Debattista, V. P.
    Agertz, O.
    Mayer, L.
    Brooks, A. M.
    Governato, F.
    Peter, A. H. G.
    Lake, G.
    HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION, 2010, 1240 : 391 - +
  • [37] Ultra-light Dark Matter Is Incompatible with the Milky Way's Dwarf Satellites
    Safarzadeh, Mohammadtaher
    Spergel, David N.
    ASTROPHYSICAL JOURNAL, 2020, 893 (01):
  • [38] Hundreds of Milky Way Satellites and a Fundamental Curve Connecting Dark Matter Halos to Galaxies
    Tollerud, E. J.
    HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION, 2010, 1240 : 425 - 426
  • [39] Using the Milky Way satellites to study interactions between cold dark matter and radiation
    Boehm, C.
    Schewtschenko, J. A.
    Wilkinson, R. J.
    Baugh, C. M.
    Pascoli, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 445 (01) : L31 - L35
  • [40] Baryonic impact on the dark matter distribution in Milky Way-sized galaxies and their satellites
    Zhu, Qirong
    Marinacci, Federico
    Maji, Moupiya
    Li, Yuexing
    Springel, Volker
    Hernquist, Lars
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (02) : 1559 - 1580