Constraining the warm dark matter particle mass with Milky Way satellites

被引:128
|
作者
Kennedy, Rachel [1 ]
Frenk, Carlos [1 ]
Cole, Shaun [1 ]
Benson, Andrew [2 ]
机构
[1] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England
[2] Carnegie Observ, Pasadena, CA 91101 USA
基金
美国国家科学基金会;
关键词
galaxies: dwarf; galaxies: formation; dark matter; GALAXY FORMATION; DWARF GALAXIES; HALO MASS; LUMINOSITY FUNCTION; STERILE NEUTRINOS; DENSITY PROFILE; COLD; EVOLUTION; ANDROMEDA; COSMOLOGY;
D O I
10.1093/mnras/stu719
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Particle physics theories predict the existence of particles (such as keV mass sterile neutrinos) which could behave as warm dark matter (WDM), producing a cutoff in the linear density power spectrum on the scale of dwarf galaxies. Thus, the abundance of Milky Way satellite galaxies depends on the mass of the warm particle and also scales with the mass of the host galactic halo. We use the galform semi-analytic model of galaxy formation to compare predicted satellite luminosity functions to Milky Way data and determine a lower bound on the thermally produced WDM particle mass. This depends strongly on the Milky Way halo mass and, to some extent, on the baryonic physics assumed. For our fiducial model, we find that for a particle mass of 3.3 keV (the 2 sigma lower limit from an analysis of the Lyman alpha forest by Viel et al.) the Milky Way halo mass is required to be > 1.4 x 10(12) M-aS (TM). For this same fiducial model, we also find that all WDM particle masses are ruled out (at 95 per cent confidence) if the Milky Way halo mass is smaller than 1.1 x 10(12) M-aS (TM), while if the mass of the Galactic halo is greater than 1.8 x 10(12) M-aS (TM), only WDM particle masses larger than 2 keV are allowed.
引用
收藏
页码:2487 / 2495
页数:9
相关论文
共 50 条
  • [21] Dark matter in the Milky Way
    Kuijken, K
    ASTROPHYSICS AND SPACE SCIENCE, 1999, 267 (1-4) : 217 - 226
  • [22] Dark matter in the Milky Way
    Kuijken, K
    STELLAR POPULATIONS, 1995, (164): : 195 - 204
  • [23] Dark Matter in the Milky Way
    Konrad Kuijken
    Astrophysics and Space Science, 1999, 267 : 217 - 226
  • [24] The spatial distribution of Milky Way satellites, gaps in streams, and the nature of dark matter
    Lovell, Mark R.
    Cautun, Marius
    Frenk, Carlos S.
    Hellwing, Wojciech A.
    Newton, Oliver
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (04) : 4826 - 4839
  • [25] Tidal Disruption of Milky Way Satellites with Shallow Dark Matter Density Profiles
    Lokas, Ewa L.
    GALAXIES, 2016, 4 (04)
  • [26] Tidal features of classical Milky Way satellites in a Λ cold dark matter universe
    Wang, M. -Y.
    Fattahi, Azadeh
    Cooper, Andrew P.
    Sawala, Till
    Strigari, Louis E.
    Frenk, Carlos S.
    Navarro, Julio F.
    Oman, Kyle
    Schaller, Matthieu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (04) : 4887 - 4901
  • [27] Milky Way Satellites: Galaxies with a Dark Side
    Strigari, Louis E.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 194 : 166 - 170
  • [28] Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way
    Newton, Oliver
    Leo, Matteo
    Cautun, Marius
    Jenkins, Adrian
    Frenk, Carlos S.
    Lovell, Mark R.
    Helly, John C.
    Benson, Andrew J.
    Cole, Shaun
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [29] Constraining self-interacting dark matter with the Milky Way's dwarf spheroidals
    Zavala, Jesus
    Vogelsberger, Mark
    Walker, Matthew G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (01) : L20 - L24
  • [30] Constraining the distribution of dark matter lumps around the Milky Way using tidal debris
    Johnston, KV
    Spergel, DN
    Haydn, C
    ASTROPHYSICAL SUPERCOMPUTING USING PARTICLE SIMULATIONS, 2003, (208): : 209 - 214