Constraining the warm dark matter particle mass with Milky Way satellites

被引:125
|
作者
Kennedy, Rachel [1 ]
Frenk, Carlos [1 ]
Cole, Shaun [1 ]
Benson, Andrew [2 ]
机构
[1] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England
[2] Carnegie Observ, Pasadena, CA 91101 USA
基金
美国国家科学基金会;
关键词
galaxies: dwarf; galaxies: formation; dark matter; GALAXY FORMATION; DWARF GALAXIES; HALO MASS; LUMINOSITY FUNCTION; STERILE NEUTRINOS; DENSITY PROFILE; COLD; EVOLUTION; ANDROMEDA; COSMOLOGY;
D O I
10.1093/mnras/stu719
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Particle physics theories predict the existence of particles (such as keV mass sterile neutrinos) which could behave as warm dark matter (WDM), producing a cutoff in the linear density power spectrum on the scale of dwarf galaxies. Thus, the abundance of Milky Way satellite galaxies depends on the mass of the warm particle and also scales with the mass of the host galactic halo. We use the galform semi-analytic model of galaxy formation to compare predicted satellite luminosity functions to Milky Way data and determine a lower bound on the thermally produced WDM particle mass. This depends strongly on the Milky Way halo mass and, to some extent, on the baryonic physics assumed. For our fiducial model, we find that for a particle mass of 3.3 keV (the 2 sigma lower limit from an analysis of the Lyman alpha forest by Viel et al.) the Milky Way halo mass is required to be > 1.4 x 10(12) M-aS (TM). For this same fiducial model, we also find that all WDM particle masses are ruled out (at 95 per cent confidence) if the Milky Way halo mass is smaller than 1.1 x 10(12) M-aS (TM), while if the mass of the Galactic halo is greater than 1.8 x 10(12) M-aS (TM), only WDM particle masses larger than 2 keV are allowed.
引用
收藏
页码:2487 / 2495
页数:9
相关论文
共 50 条
  • [1] The Milky Way's total satellite population and constraining the mass of the warm dark matter particle
    Newton, Oliver
    Cautun, Marius
    Jenkins, Adrian
    Frenk, Carlos S.
    Helly, John C.
    DWARF GALAXIES: FROM THE DEEP UNIVERSE TO THE PRESENT, 2019, 14 (S344): : 109 - 113
  • [2] Constraints on the dark matter particle mass from the number of Milky Way satellites
    Polisensky, Emil
    Ricotti, Massimo
    PHYSICAL REVIEW D, 2011, 83 (04):
  • [3] Massive Milky Way satellites in cold and warm dark matter: dependence on cosmology
    Polisensky, E.
    Ricotti, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (03) : 2922 - 2931
  • [4] Matching the mass function of Milky Way satellites in competing dark matter models
    Lovell, Mark R.
    Zavala, Jesus
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (01) : 1567 - 1589
  • [5] CENTRAL MASS AND LUMINOSITY OF MILKY WAY SATELLITES IN THE Λ COLD DARK MATTER MODEL
    Maccio, Andrea V.
    Kang, Xi
    Moore, Ben
    ASTROPHYSICAL JOURNAL LETTERS, 2009, 692 (02): : L109 - L112
  • [6] Dark matter subhalos and the dwarf satellites of the milky way
    Madau, Piero
    Diemand, Juerg
    Kuhlen, Michael
    ASTROPHYSICAL JOURNAL, 2008, 679 (02): : 1260 - 1271
  • [7] Dark Satellites of the Milky Way
    Okamoto, Takashi
    HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION, 2010, 1240 : 399 - 402
  • [8] The edge of galaxy formation III: the effects of warm dark matter on Milky Way satellites and field dwarfs
    Maccio, Andrea V.
    Frings, Jonas
    Buck, Tobias
    Dutton, Aaron A.
    Blank, Marvin
    Obreja, Aura
    Dixon, Keri L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5400 - 5408
  • [9] The population of Milky Way satellites in the Λ cold dark matter cosmology
    Font, A. S.
    Benson, A. J.
    Bower, R. G.
    Frenk, C. S.
    Cooper, A.
    DeLucia, G.
    Helly, J. C.
    Helmi, A.
    Li, Y. -S.
    McCarthy, I. G.
    Navarro, J. F.
    Springel, V.
    Starkenburg, E.
    Wang, J.
    White, S. D. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (02) : 1260 - 1279
  • [10] Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope
    Ackermann, M.
    Ajello, M.
    Albert, A.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Canadas, B.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Cutini, S.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Falletti, L.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    PHYSICAL REVIEW LETTERS, 2011, 107 (24)