Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters

被引:9
|
作者
Chen, Boquan [1 ]
D'Onghia, Elena [1 ,2 ]
Pardy, Stephen A. [1 ]
Pasquali, Anna [3 ]
Motta, Clio Bertelli [3 ]
Hanlon, Bret [4 ]
Grebel, Eva K. [3 ]
机构
[1] Univ Wisconsin Madison, Dept Astron, 475 N Charter St, Madison, WI 53076 USA
[2] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[3] Heidelberg Univ, Astron Rechen Inst, Zentrum Astron, Monchhofstr 12-14, D-69120 Heidelberg, Germany
[4] Univ Wisconsin Madison, Dept Stat, 1300 Univ Ave, Madison, WI 53076 USA
来源
ASTROPHYSICAL JOURNAL | 2018年 / 860卷 / 01期
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会; 美国国家航空航天局;
关键词
globular clusters: general; methods: data analysis; stars: abundances; stars: kinematics and dynamics; VELOCITY DISTRIBUTION; SOLAR NEIGHBORHOOD; STELLAR EVOLUTION; GALACTIC THICK; STARS; ABUNDANCES; ORIGIN;
D O I
10.3847/1538-4357/aac325
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Genetic algorithms applied to clustering problem and data mining
    Jimenez, J. F.
    Cuevas, F. J.
    Carpio, J. M.
    NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, : 219 - +
  • [42] Clustering Methods Applied for Gene Expression Data: A Study
    Gupta, Shelly
    Singh, Shailender Narayan
    Kumar, Dharminder
    2016 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2016, : 724 - 728
  • [43] Determination of the degree of star concentration in globular clusters based on space observation data
    Nuritdinov, Salakhutdin
    Rastorguev, Alexsey
    Tadjibaev, Ikram
    OPEN ASTRONOMY, 2022, 31 (01) : 1 - 4
  • [44] The rotation of selected globular clusters and the differential rotation of M3 in multiple populations from the SDSS-IV APOGEE-2 survey
    Szigeti, Laszlo
    Meszaros, Szabolcs
    Szabo, Gyula M.
    Fernandez-Trincado, Jose G.
    Lane, Richard R.
    Cohen, Roger E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (01) : 1144 - 1151
  • [45] Testing multimass dynamical models of star clusters with real data: mass segregation in three Galactic globular clusters
    Sollima, A.
    Dalessandro, E.
    Beccari, G.
    Pallanca, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 3871 - 3881
  • [46] A NEW AGE DIAGNOSTIC APPLIED TO THE GLOBULAR-CLUSTERS NGC-288 AND NGC-362
    SARAJEDINI, A
    DEMARQUE, P
    ASTROPHYSICAL JOURNAL, 1990, 365 (01): : 219 - 223
  • [47] A New Online Clustering Approach for Data in Arbitrary Shaped Clusters
    Hyde, Richard
    Angelov, Plamen
    2015 IEEE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2015, : 228 - 233
  • [48] A Clustering Approach for Discovering Intrinsic Clusters in Multivariate Geostatistical Data
    Fouedjio, Francky
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION (MLDM 2016), 2016, 9729 : 491 - 500
  • [49] A Support System for Clustering Data Streams with a Variable Number of Clusters
    Silva, Jonathan de Andrade
    Hruschka, Eduardo Raul
    ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, 2016, 11 (02)
  • [50] An evolutionary algorithm for clustering data streams with a variable number of clusters
    Silva, Jonathan de Andrade
    Hruschka, Eduardo Raul
    Gama, Joao
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 67 : 228 - 238