Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters

被引:9
|
作者
Chen, Boquan [1 ]
D'Onghia, Elena [1 ,2 ]
Pardy, Stephen A. [1 ]
Pasquali, Anna [3 ]
Motta, Clio Bertelli [3 ]
Hanlon, Bret [4 ]
Grebel, Eva K. [3 ]
机构
[1] Univ Wisconsin Madison, Dept Astron, 475 N Charter St, Madison, WI 53076 USA
[2] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[3] Heidelberg Univ, Astron Rechen Inst, Zentrum Astron, Monchhofstr 12-14, D-69120 Heidelberg, Germany
[4] Univ Wisconsin Madison, Dept Stat, 1300 Univ Ave, Madison, WI 53076 USA
来源
ASTROPHYSICAL JOURNAL | 2018年 / 860卷 / 01期
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会; 美国国家航空航天局;
关键词
globular clusters: general; methods: data analysis; stars: abundances; stars: kinematics and dynamics; VELOCITY DISTRIBUTION; SOLAR NEIGHBORHOOD; STELLAR EVOLUTION; GALACTIC THICK; STARS; ABUNDANCES; ORIGIN;
D O I
10.3847/1538-4357/aac325
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Clustering of fMRI data: the elusive optimal number of clusters
    Seghier, Mohamed L.
    PEERJ, 2018, 6
  • [32] Consensus clustering for detection of overlapping clusters in microarray data
    Deodhar, Meghana
    Ghosh, Joydeep
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 104 - +
  • [33] ENHANCED STREAMING BASED SUBSPACE CLUSTERING APPLIED TO ACOUSTIC SCENE DATA CLUSTERING
    Li, Shuoyang
    Gu, Yuantao
    Luo, Yuhui
    Chambers, Jonathon
    Wang, Wenwu
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 11 - 15
  • [34] Evolutionary Techniques for Hierarchical Clustering Applied to Microarray Data
    Castellanos-Garzon, Jos A.
    Miguel-Quintales, Luis A.
    2ND INTERNATIONAL WORKSHOP ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (IWPACBB 2008), 2009, 49 : 118 - 127
  • [35] Particle Swarm Optimization applied to Relational Data Clustering
    de Gusmao, Rene Pereira
    Tenrio de Carvalho, Francisco de Assis
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 1690 - 1695
  • [36] Mid-infrared properties of globular clusters using the IRAS data base
    Origlia, L
    Ferraro, FR
    Pecci, FF
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 280 (02) : 572 - 578
  • [38] Mid-infrared properties of globular clusters using the IRAS data base
    Osservatorio Astronomico, Strada Osservatorio 20, I-10025, Pino Torinese, Italy
    不详
    Mon. Not. R. Astron. Soc., 2 (572-578):
  • [39] Medoidshift clustering applied to genomic bulk tumor data
    Theodore Roman
    Lu Xie
    Russell Schwartz
    BMC Genomics, 17
  • [40] Medoidshift clustering applied to genomic bulk tumor data
    Roman, Theodore
    Xie, Lu
    Schwartz, Russell
    BMC GENOMICS, 2016, 17