Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors

被引:179
|
作者
Xu, Kai [1 ,6 ]
Chen, Dongxue [1 ,7 ,8 ]
Yang, Fengyou [1 ,6 ]
Wang, Zhenxin [1 ]
Yin, Lei [1 ,6 ]
Wang, Feng [1 ,6 ]
Cheng, Ruiqing [1 ,6 ]
Liu, Kaihui [7 ]
Xiong, Jie [5 ]
Liu, Qian [1 ,2 ,3 ,4 ]
He, Jun [1 ]
机构
[1] Chinese Acad Sci, Key Lab Nanosyst & Hierarchy Fabricat, CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Nankai Univ, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
[3] Nankai Univ, TEDA Appl Phys Inst, Tianjin 300457, Peoples R China
[4] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[5] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[7] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[8] South Univ Sci & Technol China, Dept Phys, Shenzhen 518005, Peoples R China
基金
中国国家自然科学基金;
关键词
Sub-10; nm; nanopatterns; 2D materials; field-effect transistors; very-large-scale integration; MOS2; LOGIC; TOP;
D O I
10.1021/acs.nanolett.6b04576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional materials (2DMs) are competitive candidates in replacing or supplementing conventional semiconductors owing to their atomically uniform thickness.-However, current conventional micro/nanofabrication technologies realize hardly ultrashort channel and integration, especially for sub-10 nm. Meanwhile, experimental device performance associated with the scaling of dimension needs to be investigated, due to the short channel effects. Here, we show a novel and universal technological method to fabricate sub-10 rim gaps with sharp edges and steep sidewalls. The realization of sub-10 nm gaps derives from a corrosion crack along the cleavage plane of Bi2O3. By this method, ultrathin body field-effect transistors (FETs), consisting of 8.2 nm channel length, 6 rim high-k dielectric, and 0.7 nm monolayer MoS2, exhibit no obvious short channel effects. The corresponding current on/off ratio and subthreshold swing reaches to 106 and 140 mV/dec, respectively. Moreover, integrated circuits with sub-10 nm channel are capable of operating as digital inverters with high voltage gain. The results suggest our technological method can be used to fabricate the ultrashort channel nanopatterns, build the experimental groundwork for 2DMs FETs with sub-10 rim channel length and 2DMs integrated circuits, and offer new potential opportunities for large-scale device constructions and applications.
引用
收藏
页码:1065 / 1070
页数:6
相关论文
共 50 条
  • [31] Investigation of Optimal Architecture of MoS2 Channel Field-Effect Transistors on a Sub-2 nm Process Node
    Park, Jihun
    Jung, Hanggyo
    Kwon, Wookyung
    Choi, Gunhee
    Chang, Jeesoo
    Jeon, Jongwook
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (04) : 2239 - 2248
  • [32] Scaling Challenges of Nanosheet Field-Effect Transistors Into Sub-2 nm Nodes
    Alabdullah, Murad G. K.
    Elmessary, M. A.
    Nagy, D.
    Seoane, N.
    Garcia-Loureiro, A. J.
    Kalna, K.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 479 - 485
  • [33] Prediction of Semiconducting 2D Nanofilms of Janus WSi2P2As2 for Applications in Sub-5 nm Field-Effect Transistors
    Dong, Mi-Mi
    He, Hang
    Niu, Yue
    Wang, Chuan-Kui
    Fu, Xiao-Xiao
    ACS APPLIED NANO MATERIALS, 2023, 6 (03) : 1541 - 1548
  • [34] Effects of dual-spacer dielectrics on low-power and high-speed performance of sub-10 nm tunneling field-effect transistors
    Yoon, Young Jun
    Seo, Jae Hwa
    Cho, Seongjae
    Kwon, Hyuck-In
    Lee, Jung-Hee
    Kang, In Man
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (06)
  • [35] 1D and 2D Bi Compounds in Field-Effect Transistors
    Uesugi, Eri
    Nishiyama, Saki
    Akiyoshi, Hidehiko
    Goto, Hidenori
    Koike, Yoji
    Yamada, Kazuyoshi
    Kubozono, Yoshihiro
    ADVANCED ELECTRONIC MATERIALS, 2015, 1 (08):
  • [36] Integrated 2D multi-fin field-effect transistors
    Yu, Mengshi
    Tan, Congwei
    Yin, Yuling
    Tang, Junchuan
    Gao, Xiaoyin
    Liu, Hongtao
    Ding, Feng
    Peng, Hailin
    NATURE COMMUNICATIONS, 2024, 15 (01) : 3622
  • [37] Performance Upper Limit of sub-10 nm Monolayer MoS2 Transistors
    Ni, Zeyuan
    Ye, Meng
    Ma, Jianhua
    Wang, Yangyang
    Quhe, Ruge
    Zheng, Jiaxin
    Dai, Lun
    Yu, Dapeng
    Shi, Junjie
    Yang, Jinbo
    Watanabe, Satoshi
    Lu, Jing
    ADVANCED ELECTRONIC MATERIALS, 2016, 2 (09):
  • [38] Sub-10 nm two-dimensional transistors: Theory and experiment
    Quhe, Ruge
    Xu, Lin
    Liu, Shiqi
    Yang, Chen
    Wang, Yangyang
    Li, Hong
    Yang, Jie
    Li, Qiuhui
    Shi, Bowen
    Li, Ying
    Pan, Yuanyuan
    Sun, Xiaotian
    Li, Jingzhen
    Weng, Mouyi
    Zhang, Han
    Guo, Ying
    Xu, Linqiang
    Tang, Hao
    Dong, Jichao
    Yang, Jinbo
    Zhang, Zhiyong
    Lei, Ming
    Pan, Feng
    Lu, Jing
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 938 : 1 - 72
  • [39] Scaling aligned carbon nanotube transistors to a sub-10 nm node
    Lin, Yanxia
    Cao, Yu
    Ding, Sujuan
    Zhang, Panpan
    Xu, Lin
    Liu, Chenchen
    Hu, Qianlan
    Jin, Chuanhong
    Peng, Lian-Mao
    Zhang, Zhiyong
    NATURE ELECTRONICS, 2023, 6 (07) : 506 - 515
  • [40] Scaling aligned carbon nanotube transistors to a sub-10 nm node
    Yanxia Lin
    Yu Cao
    Sujuan Ding
    Panpan Zhang
    Lin Xu
    Chenchen Liu
    Qianlan Hu
    Chuanhong Jin
    Lian-Mao Peng
    Zhiyong Zhang
    Nature Electronics, 2023, 6 : 506 - 515