Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors

被引:179
|
作者
Xu, Kai [1 ,6 ]
Chen, Dongxue [1 ,7 ,8 ]
Yang, Fengyou [1 ,6 ]
Wang, Zhenxin [1 ]
Yin, Lei [1 ,6 ]
Wang, Feng [1 ,6 ]
Cheng, Ruiqing [1 ,6 ]
Liu, Kaihui [7 ]
Xiong, Jie [5 ]
Liu, Qian [1 ,2 ,3 ,4 ]
He, Jun [1 ]
机构
[1] Chinese Acad Sci, Key Lab Nanosyst & Hierarchy Fabricat, CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Nankai Univ, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
[3] Nankai Univ, TEDA Appl Phys Inst, Tianjin 300457, Peoples R China
[4] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[5] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[7] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[8] South Univ Sci & Technol China, Dept Phys, Shenzhen 518005, Peoples R China
基金
中国国家自然科学基金;
关键词
Sub-10; nm; nanopatterns; 2D materials; field-effect transistors; very-large-scale integration; MOS2; LOGIC; TOP;
D O I
10.1021/acs.nanolett.6b04576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional materials (2DMs) are competitive candidates in replacing or supplementing conventional semiconductors owing to their atomically uniform thickness.-However, current conventional micro/nanofabrication technologies realize hardly ultrashort channel and integration, especially for sub-10 nm. Meanwhile, experimental device performance associated with the scaling of dimension needs to be investigated, due to the short channel effects. Here, we show a novel and universal technological method to fabricate sub-10 rim gaps with sharp edges and steep sidewalls. The realization of sub-10 nm gaps derives from a corrosion crack along the cleavage plane of Bi2O3. By this method, ultrathin body field-effect transistors (FETs), consisting of 8.2 nm channel length, 6 rim high-k dielectric, and 0.7 nm monolayer MoS2, exhibit no obvious short channel effects. The corresponding current on/off ratio and subthreshold swing reaches to 106 and 140 mV/dec, respectively. Moreover, integrated circuits with sub-10 nm channel are capable of operating as digital inverters with high voltage gain. The results suggest our technological method can be used to fabricate the ultrashort channel nanopatterns, build the experimental groundwork for 2DMs FETs with sub-10 rim channel length and 2DMs integrated circuits, and offer new potential opportunities for large-scale device constructions and applications.
引用
收藏
页码:1065 / 1070
页数:6
相关论文
共 50 条
  • [1] Sub-10 nm junctionless carbon nanotube field-effect transistors with improved performance
    Tamersit, Khalil
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 124
  • [2] Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors
    Kim, Sung Yoon
    Seo, Jae Hwa
    Yoon, Young Jun
    Yoo, Gwan Min
    Kim, Young Jae
    Eun, Hye Rim
    Kang, Hye Su
    Kim, Jungjoon
    Cho, Seongjae
    Lee, Jung-Hee
    Kang, In Man
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2014, 14 (05) : 508 - 517
  • [3] Few-Layered MoS2 Field-Effect Transistors with a Vertical Channel of Sub-10 nm
    Zou, Xiao
    Liu, Lu
    Xu, Jingping
    Wang, Hongjiu
    Tang, Wing-Man
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 32943 - 32950
  • [4] Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores
    Nam, Sung-Wook
    Rooks, Michael J.
    Kim, Ki-Bum
    Rossnagel, Stephen M.
    NANO LETTERS, 2009, 9 (05) : 2044 - 2048
  • [5] Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography
    Son, Jeong Gon
    Son, Myungwoo
    Moon, Kyeong-Joo
    Lee, Byoung Hun
    Myoung, Jae-Min
    Strano, Michael S.
    Ham, Moon-Ho
    Ross, Caroline A.
    ADVANCED MATERIALS, 2013, 25 (34) : 4723 - 4728
  • [6] MoS2 Field-Effect Transistor with Sub-10 nm Channel Length
    Nourbakhsh, Amirhasan
    Zubair, Ahmad
    Sajjad, Redwan N.
    Tavakkoli, Amir K. G.
    Chen, Wei
    Fang, Shiang
    Ling, Xi
    Kong, Jing
    Dresselhaus, Mildred S.
    Kaxiras, Efthimios
    Berggren, Karl K.
    Antoniadis, Dimitri
    Palacios, Tomas
    NANO LETTERS, 2016, 16 (12) : 7798 - 7806
  • [7] High-Performance Ballistic Quantum Transport of Sub-10 nm Monolayer GeS Field-Effect Transistors
    Ding, Yu
    Liu, Yu-Shen
    Yang, Guofeng
    Gu, Yan
    Fan, Qigao
    Lu, Naiyan
    Zhao, Huiqin
    Yu, Yingzhou
    Zhang, Xiumei
    Huo, Xinxia
    Chen, Guoqing
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (03) : 1151 - 1161
  • [8] Sub-10 nm tunneling field-effect transistors based on monolayer group IV mono-chalcogenides
    Li, Hong
    Xu, Peipei
    Lu, Jing
    NANOSCALE, 2019, 11 (48) : 23392 - 23401
  • [9] Chemical vapor deposition and electrical characterization of sub-10 nm diameter InSb nanowires and field-effect transistors
    Paul, Rajat Kanti
    Penchev, Miroslav
    Zhong, Jiebin
    Ozkan, Mihrimah
    Ghazinejad, Maziar
    Jing, Xiaoye
    Yengel, Emre
    Ozkan, Cengiz S.
    MATERIALS CHEMISTRY AND PHYSICS, 2010, 121 (03) : 397 - 401
  • [10] 2D fin field-effect transistors
    Quhe, Ruge
    Li, Qiuhui
    Yang, Xingyue
    Lu, Jing
    SCIENCE BULLETIN, 2023, 68 (12) : 1213 - 1215