A Three-Dimensionally Interconnected Carbon Nanotube-Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes

被引:277
|
作者
Chen, Zheng [1 ]
To, John W. F. [1 ]
Wang, Chao [1 ]
Lu, Zhenda [2 ]
Liu, Nan [1 ]
Chortos, Alex [1 ]
Pan, Lijia [3 ]
Wei, Fei [4 ]
Cui, Yi [2 ,5 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Microstruct Nanjing, Nanjing 210093, Jiangsu, Peoples R China
[4] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[5] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94205 USA
关键词
ELECTROCHEMICAL ENERGY-STORAGE; ALL-SOLID-STATE; TIO2; ANATASE; SILICON; PAPER; SUPERCAPACITORS; ANODES; GRAPHENE; FILMS; THIN;
D O I
10.1002/aenm.201400207
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-performance flexible energy-storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three-dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)-conductive polymer network architecture is reported for high-performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e. g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT-conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high-rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g(-1) in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm(-2) can be obtained for flexible SiNP-based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] High-performance polymer/carbon nanotube composite fibers
    Minus, Marilyn L.
    Chae, Han Gi
    Jagannathan, Sudhakar
    Choi, Young Ho
    Jain, Rahul
    Liu, Yaodong
    Ford, Ericka
    Kumar, Satish
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [32] A graphene/carbon nanotube@π-conjugated polymer nanocomposite for high-performance organic supercapacitor electrodes
    Sun, Minqiang
    Wang, Gengchao
    Yang, Chongyang
    Jiang, Hao
    Li, Chunzhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) : 3880 - 3890
  • [33] Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin
    Ma, Chun-Fang
    Gao, Qiang
    Xia, Kai-Sheng
    Huang, Zhi-Yuan
    Han, Bo
    Zhou, Cheng-Gang
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2017, 149 : 146 - 153
  • [34] Three-dimensionally hierarchical NiCoP@PANI architecture for high-performance hydrogen evolution reaction
    Zhang, Jiawei
    Li, Yu
    Wang, Zhe
    Wang, Yuqing
    Wang, Fan
    Chen, Minghua
    NANOTECHNOLOGY, 2020, 31 (44)
  • [35] Au-modified three-dimensionally ordered macroporous ZnO:In for high-performance ethanol sensors
    Wang, Zhihua
    Tian, Ziwei
    Han, Dongmei
    Gu, Fubo
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (08) : 2812 - 2819
  • [36] Dynamic high potential treatment with dilute acids for lifting the capacitive performance of carbon nanotube/conducting polymer electrodes
    Yang, Qin
    Pang, Siu-Kwong
    Yung, Kam-Chuen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 758 : 125 - 134
  • [37] Three Dimensionally Ordered Mesoporous Carbon as a Stable, High-Performance Li-O2 Battery Cathode
    Xie, Jin
    Yao, Xiahui
    Cheng, Qingmei
    Madden, Ian P.
    Dornath, Paul
    Chang, Chun-Chih
    Fan, Wei
    Wang, Dunwei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (14) : 4299 - 4303
  • [38] High-Performance Transparent Conducting Metal Network Electrodes for Perovksite Photodetectors
    Yang, Jie
    Bao, Chunxiong
    Zhu, Kai
    Yu, Tao
    Xu, Qingyu
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 1996 - 2003
  • [39] From carbon nanotube coatings to high-performance polymer nanocomposites
    Bredeau, Stephane
    Peeterbroeck, Sophie
    Bonduel, Daniel
    Alexandre, Michael
    Dubois, Philippe
    POLYMER INTERNATIONAL, 2008, 57 (04) : 547 - 553
  • [40] Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction
    Meng, Xiangyu
    Yu, Liang
    Ma, Chao
    Nan, Bing
    Si, Rui
    Tu, Yunchuan
    Deng, Jiao
    Deng, Dehui
    Bao, Xinhe
    NANO ENERGY, 2019, 61 : 611 - 616