A graphene/carbon nanotube@π-conjugated polymer nanocomposite for high-performance organic supercapacitor electrodes

被引:55
|
作者
Sun, Minqiang [1 ]
Wang, Gengchao [1 ]
Yang, Chongyang [1 ]
Jiang, Hao [1 ]
Li, Chunzhong [1 ]
机构
[1] E China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai Key Lab Adv Polymer Mat, Key Lab Ultrafine Mat,Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIWALLED CARBON NANOTUBES; ELECTROCHEMICAL CAPACITANCE; HIERARCHICAL COMPOSITES; POLYANILINE; POLY(1,5-DIAMINOANTHRAQUINONE); ARRAYS; NANOSTRUCTURES; NETWORKS; AEROGEL; SURFACE;
D O I
10.1039/c4ta06728b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supercapacitors based on pi-conjugated conducting polymers have attracted attention due to their high pseudo-capacitance characteristics. However, the narrow window of their potential (<1 V) gives rise to low energy density, and this restricts their practical application. In the present study a novel hierarchical nanocomposite, graphene nanosheets/acid-treated multi-walled carbon nanotube-supported poly(1,5-diaminoanthraquinone) (GNS/aMWCNT@PDAA), has been successfully synthesized using cerium sulphate (Ce(SO4)(2)) as oxidant and camphor sulphonic acid as dopant. The nanocomposite exhibits a unique nanoporous morphology, a high pi-conjugated degree and an excellent conductive interpenetrating network. With these intriguing features, in addition to its unique p- and n-doping characteristics, the supercapacitor in a 1 M tetraethylammonium tetrafluoroborate - acetonitrile (Et4NBF4-AN) electrolyte can be reversibly cycled within a potential window of 2.8 V. The supercapacitor achieves a high energy density of 86.4 W h kg(-1) at a power density of 0.73 kW kg(-1), and still retains energy density of 55.5 W h kg(-1) at a power density of 153.9 kW kg(-1). In addition, superior cycling stability is achieved, with only 7% capacitance loss after 10 000 cycles. This excellent performance surpasses that of other recently reported supercapacitors and represents a significant breakthrough in p- conjugated polymer-based supercapacitors.
引用
下载
收藏
页码:3880 / 3890
页数:11
相关论文
共 50 条
  • [1] MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes
    Zhao Jun Han
    Dong Han Seo
    Samuel Yick
    Jun Hong Chen
    Kostya (Ken) Ostrikov
    NPG Asia Materials, 2014, 6 : e140 - e140
  • [2] MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes
    Han, Zhao Jun
    Seo, Dong Han
    Yick, Samuel
    Chen, Jun Hong
    Ostrikov, Kostya
    NPG ASIA MATERIALS, 2014, 6 : e140 - e140
  • [3] High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes
    Shen, Jiali
    Yang, Chongyang
    Li, Xingwei
    Wang, Gengchao
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (17) : 8467 - 8476
  • [4] High-performance Supercapacitor cells with Activated Carbon/MWNT nanocomposite electrodes
    Markoulidis, F.
    Lei, C.
    Lekakou, C.
    Figgemeier, E.
    Duff, D.
    Khalil, S.
    Martorana, B.
    Cannavaro, I.
    INTERNATIONAL CONFERENCE ON STRUCTURAL NANO COMPOSITES (NANOSTRUC 2012), 2012, 40
  • [5] A Graphene Oxide-Thioamide Polymer Hybrid for High-Performance Supercapacitor Electrodes
    Czepa, Wlodzimierz
    Witomska, Samanta
    Samori, Paolo
    Ciesielski, Artur
    SMALL SCIENCE, 2023, 3 (05):
  • [6] Carbon dots conjugated nanocomposite for the enhanced electrochemical performance of supercapacitor electrodes
    Youssry, Sally M.
    Abd Elkodous, M.
    Kawamura, Go
    Matsuda, Atsunori
    RSC ADVANCES, 2021, 11 (63) : 39636 - 39645
  • [7] Polyaniline–Graphene Oxide based ordered nanocomposite electrodes for high-performance supercapacitor applications
    M. Manoj
    K. M. Anilkumar
    B. Jinisha
    S. Jayalekshmi
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 14323 - 14330
  • [8] Triazine-based covalent organic framework/carbon nanotube fiber nanocomposites for high-performance supercapacitor electrodes
    Yang, Huan-Cheng
    Chen, Yi-Yun
    Suen, Shing-Yi
    Lee, Rong-Ho
    POLYMER, 2023, 273
  • [9] Zinc oxide/carbon nanotube nanocomposite for high-performance flexible supercapacitor with sensing ability
    Wang, Wei
    Jiao, Shasha
    Cao, Junyi
    Naguib, Hani E.
    ELECTROCHIMICA ACTA, 2020, 350
  • [10] Dawson-type Polyoxometalate and Carbon nanotubes Nanocomposite for high-performance Supercapacitor Electrodes
    Liu, Shuping
    PROCEEDINGS OF THE 2015 INTERNATIONAL POWER, ELECTRONICS AND MATERIALS ENGINEERING CONFERENCE, 2015, 17 : 682 - 685