A fairly strong stability result for parabolic quasiminimizers

被引:3
|
作者
Fujishima, Yohei [1 ]
Habermann, Jens [2 ]
Masson, Mathias [3 ]
机构
[1] Shizuoka Univ, Fac Engn, Johoku 3-5-1, Hamamatsu, Shizuoka 4328561, Japan
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Aalto Univ, Dept Math, POB 11100, FI-00076 Aalto, Finland
关键词
parabolic equations; parabolic quasiminimizers; regularity; stability; DEGENERATE; EQUATIONS;
D O I
10.1002/mana.201700018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider parabolic Q-quasiminimizers related to the p-Laplace equation in Omega(T) : = Omega x (0, T). In particular, we focus on the stability problem with respect to the parameters p and Q. It is known that, if Q -> 1, then parabolic quasiminimizers with fixed initial-boundary data on Omega(T) converge to the parabolic minimizer strongly in L-p(0, T; W-1,W-p(Omega)) under suitable further structural assumptions. Our concern is whether or not we can obtain even stronger convergence. We will show a fairly strong stability result.
引用
收藏
页码:1269 / 1282
页数:14
相关论文
共 50 条
  • [1] Stability for Parabolic Quasiminimizers
    Fujishima, Yohei
    Habermann, Jens
    Kinnunen, Juha
    Masson, Mathias
    POTENTIAL ANALYSIS, 2014, 41 (03) : 983 - 1004
  • [2] Stability for Parabolic Quasiminimizers
    Yohei Fujishima
    Jens Habermann
    Juha Kinnunen
    Mathias Masson
    Potential Analysis, 2014, 41 : 983 - 1004
  • [3] A strong regularity result for parabolic equations
    Zhang, QS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 244 (02) : 245 - 260
  • [4] A Strong Regularity Result for Parabolic Equations
    Qi S. Zhang
    Communications in Mathematical Physics, 2004, 244 : 245 - 260
  • [5] Finite speed propagation for parabolic quasiminimizers
    Fujishima, Y.
    Habermann, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [7] Global stability result for parabolic Cauchy problems
    Choulli, Mourad
    Yamamoto, Masahiro
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06): : 895 - 915
  • [8] PARABOLIC COMPARISON PRINCIPLE AND QUASIMINIMIZERS IN METRIC MEASURE SPACES
    Kinnunen, Juha
    Masson, Mathias
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 621 - 632
  • [9] Global higher integrability for parabolic quasiminimizers in nonsmooth domains
    Mikko Parviainen
    Calculus of Variations and Partial Differential Equations, 2008, 31 : 75 - 98
  • [10] Local higher integrability for parabolic quasiminimizers in metric spaces
    Masson M.
    Miranda Jr. M.
    Paronetto F.
    Parviainen M.
    Ricerche di Matematica, 2013, 62 (2) : 279 - 305