Stability for Parabolic Quasiminimizers

被引:0
|
作者
Yohei Fujishima
Jens Habermann
Juha Kinnunen
Mathias Masson
机构
[1] Osaka University,Graduate School of Engineering Science
[2] University of Erlangen,Department of Mathematics
[3] Aalto University,Department of Mathematics
来源
Potential Analysis | 2014年 / 41卷
关键词
Parabolic p-Laplace operator; Parabolic quasiminimizers; Parabolic higher integrability; Regularity theory Stability; 35K92; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies parabolic quasiminimizers which are solutions to parabolic variational inequalities. We show that, under a suitable regularity condition on the boundary, parabolic Q-quasiminimizers related to the parabolic p-Laplace equations with given boundary values are stable with respect to parameters Q and p. The argument is based on variational techniques, higher integrability results and regularity estimates in time. This shows that stability does not only hold for parabolic partial differential equations but it also holds for variational inequalities.
引用
收藏
页码:983 / 1004
页数:21
相关论文
共 50 条
  • [1] Stability for Parabolic Quasiminimizers
    Fujishima, Yohei
    Habermann, Jens
    Kinnunen, Juha
    Masson, Mathias
    POTENTIAL ANALYSIS, 2014, 41 (03) : 983 - 1004
  • [2] A fairly strong stability result for parabolic quasiminimizers
    Fujishima, Yohei
    Habermann, Jens
    Masson, Mathias
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1269 - 1282
  • [3] Finite speed propagation for parabolic quasiminimizers
    Fujishima, Y.
    Habermann, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [5] PARABOLIC COMPARISON PRINCIPLE AND QUASIMINIMIZERS IN METRIC MEASURE SPACES
    Kinnunen, Juha
    Masson, Mathias
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 621 - 632
  • [6] Global higher integrability for parabolic quasiminimizers in nonsmooth domains
    Mikko Parviainen
    Calculus of Variations and Partial Differential Equations, 2008, 31 : 75 - 98
  • [7] Local higher integrability for parabolic quasiminimizers in metric spaces
    Masson M.
    Miranda Jr. M.
    Paronetto F.
    Parviainen M.
    Ricerche di Matematica, 2013, 62 (2) : 279 - 305
  • [8] GLOBAL HIGHER INTEGRABILITY FOR PARABOLIC QUASIMINIMIZERS IN METRIC MEASURE SPACES
    Masson, Mathias
    Parviainen, Mikko
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 126 (01): : 307 - 339
  • [9] Global higher integrability for parabolic quasiminimizers in metric measure spaces
    Mathias Masson
    Mikko Parviainen
    Journal d'Analyse Mathématique, 2015, 126 : 307 - 339
  • [10] Higher integrability and stability of (p, q)-quasiminimizers
    Nastasi, Antonella
    Camacho, Cintia Pacchiano
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 342 : 121 - 149