A fairly strong stability result for parabolic quasiminimizers

被引:3
|
作者
Fujishima, Yohei [1 ]
Habermann, Jens [2 ]
Masson, Mathias [3 ]
机构
[1] Shizuoka Univ, Fac Engn, Johoku 3-5-1, Hamamatsu, Shizuoka 4328561, Japan
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Aalto Univ, Dept Math, POB 11100, FI-00076 Aalto, Finland
关键词
parabolic equations; parabolic quasiminimizers; regularity; stability; DEGENERATE; EQUATIONS;
D O I
10.1002/mana.201700018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider parabolic Q-quasiminimizers related to the p-Laplace equation in Omega(T) : = Omega x (0, T). In particular, we focus on the stability problem with respect to the parameters p and Q. It is known that, if Q -> 1, then parabolic quasiminimizers with fixed initial-boundary data on Omega(T) converge to the parabolic minimizer strongly in L-p(0, T; W-1,W-p(Omega)) under suitable further structural assumptions. Our concern is whether or not we can obtain even stronger convergence. We will show a fairly strong stability result.
引用
收藏
页码:1269 / 1282
页数:14
相关论文
共 50 条