HIGHER ORDER MIXED-MOMENT APPROXIMATIONS FOR THE FOKKER-PLANCK EQUATION IN ONE SPACE DIMENSION

被引:20
|
作者
Schneider, Florian [1 ]
Alldredge, Graham [2 ]
Frank, Martin [2 ]
Klar, Axel [1 ,3 ]
机构
[1] TU Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
[2] Rhein Westfal TH Aachen, Dept Math, Aachen, Germany
[3] Fraunhofer Inst Techno & Wirtschaftsmath, D-67663 Kaiserslautern, Germany
关键词
partial differential equations; Fokker-Planck equations; methods of moments; minimum entropy; partial moments; hyperbolic partial differential equation; RADIATIVE HEAT-TRANSFER; ENTROPY-BASED CLOSURES; ELECTRON RADIOTHERAPY; EDDINGTON FACTORS; QUADRATURE METHOD; LINEAR TRANSPORT; RIEMANN SOLVERS; PARTICLE FLOWS; SLAB GEOMETRY; HIERARCHY;
D O I
10.1137/130934210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study mixed-moment models (full zeroth moment, half higher moments) for a Fokker-Planck equation in one space dimension. Mixed-moment minimum-entropy models are known to overcome the zero net-flux problem of full-moment minimum-entropy M-n models. A realizability theory for these mixed moments of arbitrary order is derived, as well as a new closure, which we refer to as Kershaw closure. They provide nonnegative distribution functions combined with an analytical closure. Numerical tests are performed with standard first-order finite volume schemes and compared with a finite difference Fokker-Planck scheme.
引用
收藏
页码:1087 / 1114
页数:28
相关论文
共 50 条
  • [31] A Comparative Analysis of Fractional-Order Fokker-Planck Equation
    Mofarreh, Fatemah
    Khan, Asfandyar
    Shah, Rasool
    Abdeljabbar, Alrazi
    SYMMETRY-BASEL, 2023, 15 (02):
  • [32] A generalized Fokker-Planck equation for anomalous diffusion in velocity space
    Dubinova, A. A.
    Trigger, S. A.
    PHYSICS LETTERS A, 2012, 376 (24-25) : 1930 - 1936
  • [33] A numerical algorithm for the space and time fractional Fokker-Planck equation
    Vanani, S. Karimi
    Aminataei, A.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (08) : 1037 - 1052
  • [34] Order preservation and positive correlation for nonlinear Fokker-Planck equation
    Ren, Panpan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [35] SIMILARITY SOLUTIONS OF THE ONE-DIMENSIONAL FOKKER-PLANCK EQUATION
    SUCCI, S
    IACONO, R
    PHYSICAL REVIEW A, 1986, 33 (06): : 4419 - 4422
  • [36] One-parameter isospectral solutions for the Fokker-Planck equation
    Rubio-Ponce, A
    Peña, JJ
    Morales, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) : 285 - 295
  • [37] Numerical Approximations for the Fractional Fokker-Planck Equation with Two-Scale Diffusion
    Sun, Jing
    Deng, Weihua
    Nie, Daxin
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [38] Fokker-Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath
    Shea, JE
    Oppenheim, I
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49): : 19035 - 19042
  • [39] Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum
    Guarnieri, F.
    Moon, W.
    Wettlaufer, J. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [40] How to solve Fokker-Planck equation treating mixed eigenvalue spectrum?
    Brics, M.
    Kaupuzs, J.
    Mahnke, R.
    CONDENSED MATTER PHYSICS, 2013, 16 (01)