Numerical Approximations for the Fractional Fokker-Planck Equation with Two-Scale Diffusion

被引:2
|
作者
Sun, Jing [1 ]
Deng, Weihua [1 ]
Nie, Daxin [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Fokker-Planck equation; Two-scale diffusion; Finite element; L-1; scheme; Error estimates; NONSMOOTH DATA;
D O I
10.1007/s10915-022-01812-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional Fokker-Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing numerical discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive the fractional Fokker-Planck equation with two-scale diffusion from the Levy process framework, and then the fully discrete scheme is built by using the L-1 scheme for time discretization and finite element method for space. With the help of the sharp regularity estimate of the solution, we optimally get the spatial and temporal error estimates. Finally, we validate the effectiveness of the provided algorithm by extensive numerical experiments.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Numerical Approximations for the Fractional Fokker–Planck Equation with Two-Scale Diffusion
    Jing Sun
    Weihua Deng
    Daxin Nie
    Journal of Scientific Computing, 2022, 91
  • [2] FOKKER-PLANCK EQUATION AND ITS DIFFUSION APPROXIMATIONS
    ENGLADE, RC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (12): : 1426 - &
  • [3] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [4] On fractional approximations of the Fokker-Planck equation for energetic particle transport
    Tawfik, Ashraf M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10):
  • [5] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [6] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [7] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [8] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [9] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [10] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863