Simulation of mineral grades with hard and soft conditioning data: application to a porphyry copper deposit

被引:15
|
作者
Emery, Xavier [1 ]
Robles, Lucia N. [2 ]
机构
[1] Univ Chile, Dept Min Engn, Santiago 8370451, Chile
[2] McGill Univ, Dept Min Met & Mat Engn, Montreal, PQ H3A 2A7, Canada
关键词
Geostatistics; Conditional simulation; Gibbs sampler; Soft conditioning data; Spatial trends; GIBBS SAMPLER; GEOLOGICAL BOUNDARIES; COVARIANCE-MATRIX; DECOMPOSITION; RESOURCES; BRECCIA; CHILE;
D O I
10.1007/s10596-008-9106-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work deals with the geostatistical simulation of mineral grades whose distribution exhibits spatial trends within the ore deposit. It is suggested that these trends can be reproduced by using a stationary random field model and by conditioning the realizations to data that incorporate the available information on the local grade distribution. These can be hard data (e.g., assays on samples) or soft data (e.g., rock-type information) that account for expert geological knowledge and supply the lack of hard data in scarcely sampled areas. Two algorithms are proposed, depending on the kind of soft data under consideration: interval constraints or local moment constraints. An application to a porphyry copper deposit is presented, in which it is shown that the incorporation of soft conditioning data associated with the prevailing rock type improves the modeling of the uncertainty in the actual copper grades.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [31] Geochemistry and mineral chemical behavior of hydrothermal alteration of the Tuwu porphyry copper deposit, Eastern Tianshan, Northwest China
    Yuan, Hongqing
    Shen, Ping
    Pan, Hongdi
    An, Zhi-Hai
    Ma, Ge
    Li, Wenguang
    GEOLOGICAL JOURNAL, 2020, 55 (01) : 786 - 805
  • [32] Geostatistical modelling of rock type domains with spatially varying proportions: Application to a porphyry copper deposit
    Department of Mining Engineering, University of Chile, Santiago, Chile
    不详
    J S Afr Inst Min Metall, 2008, 5 (285-292):
  • [33] Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran
    Afshooni, S. Z.
    Mirnejad, H.
    Esmaeily, D.
    Haroni, H. Asadi
    ORE GEOLOGY REVIEWS, 2013, 54 : 214 - 232
  • [34] LEAD ISOTOPE DATA FROM THE SAR-CHESHMEH PORPHYRY COPPER-DEPOSIT, IRAN
    SHAHABPOUR, J
    KRAMERS, JD
    MINERALIUM DEPOSITA, 1987, 22 (04) : 278 - 281
  • [35] Inversion of geophysical data over a copper gold porphyry deposit: A case history for Mt Milligan
    Oldenburg, DW
    Li, YG
    Ellis, RG
    GEOPHYSICS, 1997, 62 (05) : 1419 - 1431
  • [37] One-Dimensional-Mixed Convolution Neural Network and Covariance Pooling Model for Mineral Mapping of Porphyry Copper Deposit Using PRISMA Hyperspectral Data
    Peyghambari, Sima
    Zhang, Yun
    Heidarian, Hassan
    Sekandari, Milad
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2024, 90 (08): : 511 - 522
  • [38] 3D inversion of audio-magnetotelluric data for mineral exploration: A case study of Layikeleke buried porphyry copper deposit, Xinjiang, China
    Fu Guang-Ming
    Yan Jia-Yong
    Hui, Chen
    Meng Gui-Xiang
    Hui, Yu
    Fan, Luo
    Lei, Luo
    Xin, Tao
    APPLIED GEOPHYSICS, 2020, 17 (04) : 576 - 588
  • [39] 3D inversion of audio-magnetotelluric data for mineral exploration: A case study of Layikeleke buried porphyry copper deposit, Xinjiang, China
    Fu Guang-Ming
    Yan Jia-Yong
    Chen Hui
    Meng Gui-Xiang
    Yu Hui
    Luo Fan
    Luo Lei
    Tao Xin
    Applied Geophysics, 2020, 17 : 576 - 588
  • [40] Application of "Alteration indices" at the Elatsite porphyry-copper deposit: a reliable geochemical tool for identification of hydrothermal alteration zones at porphyry deposits
    Georgieva, Hristiana
    Nedialkov, Rossen
    Stefanova, Elitsa
    Milenkov, Georgi
    Nanov, Zahari
    Georgiev, Neven
    Petrov, Petroslav
    SPISANIE NA B LGARSKOTO GEOLOGICHESKO DRUZHESTOV-REVIEW OF THE BULGARIAN GEOLOGICAL SOCIETY, 2024, 85 : 57 - 68