Frobenius map on local Calabi-Yau manifolds

被引:0
|
作者
Shapiro, I. [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
geometry; polynomials; INSTANTON NUMBERS;
D O I
10.1063/1.3075574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove results that, for a certain class of noncompact Calabi-Yau threefolds, relate the Frobenius action on their p-adic cohomology to the Frobenius action on the p-adic cohomology of the corresponding curves. In the Appendix, we describe our interpretation of the Griffiths-Dwork method.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Calabi-Yau Frobenius algebras
    Eu, Ching-Hwa
    Schedler, Travis
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 774 - 815
  • [2] Brane superpotential and local Calabi-Yau manifolds
    Ricco, Antonio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (14-15): : 2187 - 2189
  • [3] Frobenius polynomials for Calabi-Yau equations
    Samol, Kira
    van Straten, Duco
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2008, 2 (03) : 537 - 561
  • [4] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010
  • [5] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [6] Generalized Calabi-Yau manifolds
    Hitchin, N
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 281 - 308
  • [7] Calabi-Yau manifolds and their degenerations
    Tosatti, Valentino
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 8 - 13
  • [8] Convergence of Calabi-Yau manifolds
    Ruan, Wei-Dong
    Zhang, Yuguang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1543 - 1589
  • [9] On solvable generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    ANNALES DE L INSTITUT FOURIER, 2006, 56 (05) : 1281 - 1296
  • [10] A Calabi-Yau theorem for Vaisman manifolds
    Ornea, Liviu
    Verbitsky, Misha
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2024, 32 (10) : 2889 - 2900