共 50 条
Uniform Diophantine approximation related to b-ary and β-expansions
被引:19
|作者:
Bugeaud, Yann
[1
]
Liao, Lingmin
[2
]
机构:
[1] Univ Strasbourg, IRMA, F-67084 Strasbourg, France
[2] Univ Paris Est Creteil, LAMA 61, F-94000 Creteil, France
关键词:
DYNAMICAL-SYSTEM;
EXPONENTS;
D O I:
10.1017/etds.2014.66
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let b >= 2 be an integer and (v) over cap a real number. Among other results, we compute the Hausdorff dimension of the set of real numbers xi with the property that, for every sufficiently large integer N, there exists an integer n such that 1 <= n <= N and the distance between b(n) xi and its nearest integer is at most equal to b(-(v) over capN). We further solve the same question when replacing b(n)xi by T-beta(n)xi, where T-beta denotes the classical beta-transformation.
引用
收藏
页码:1 / 22
页数:22
相关论文