Nonequilibrium transport in quantum impurity models: The Bethe ansatz for open systems

被引:170
|
作者
Mehta, Pankaj [1 ]
Andrei, Natan [1 ]
机构
[1] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA
关键词
D O I
10.1103/PhysRevLett.96.216802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an exact nonperturbative framework to compute steady-state properties of quantum impurities subject to a finite bias. We show that the steady-state physics of these systems is captured by nonequilibrium scattering eigenstates which satisfy an appropriate Lippman-Schwinger equation. Introducing a generalization of the equilibrium Bethe ansatz-the nonequilibrium Bethe ansatz-we explicitly construct the scattering eigenstates for the interacting resonance level model and derive exact, nonperturbative results for the steady-state properties of the system.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz
    Zhang, Xin
    Li, Yuan-Yuan
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [22] Completeness of Bethe ansatz by Sklyanin SOV for cyclic representations of integrable quantum models
    G. Niccoli
    Journal of High Energy Physics, 2011
  • [23] Completeness of Bethe ansatz by Sklyanin SOV for cyclic representations of integrable quantum models
    Niccoli, G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):
  • [24] Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity
    Gainutdinov, Azat M.
    Nepomechie, Rafael I.
    NUCLEAR PHYSICS B, 2016, 909 : 796 - 839
  • [25] On Solutions of the Bethe Ansatz for the Quantum KdV Model
    Conti, Riccardo
    Masoero, Davide
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 335 - 390
  • [26] Bethe ansatz for a quantum supercoset sigma model
    Mann, N
    Polchinski, J
    PHYSICAL REVIEW D, 2005, 72 (08)
  • [27] Bethe ansatz for quantum-deformed strings
    Fiona K. Seibold
    Alessandro Sfondrini
    Journal of High Energy Physics, 2021
  • [28] Preparing Bethe Ansatz Eigenstates on a Quantum Computer
    Van Dyke, John S.
    Barron, George S.
    Mayhall, Nicholas J.
    Barnes, Edwin
    Economou, Sophia E.
    PRX QUANTUM, 2021, 2 (04):
  • [29] How accurate is the quantum string Bethe ansatz?
    Schafer-Nameki, Sakura
    Zamaklar, Marija
    Zarembo, Konstantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12):
  • [30] On Solutions of the Bethe Ansatz for the Quantum KdV Model
    Riccardo Conti
    Davide Masoero
    Communications in Mathematical Physics, 2023, 402 : 335 - 390