Bounds on eigenvalues and chromatic numbers

被引:0
|
作者
Cao, DS
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new bounds on eigenvalue of graphs which imply some known bounds. In particular, if T(G) is the maximum sum of degrees of vertices adjacent to a vertex in a graph G, the largest eigenvalue rho(G) of G satisfies rho(G) less than or equal to root T(G) with equality if and only if either G is regular or G is bipartite and such that all vertices in the same part have the same degree. Consequently, we prove that the chromatic number of G is at most root T(G) + 1 with equality if and only if G is an odd cycle or a complete graph, which implies Brook's theorem. A generalization of this result is also given. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] LOWER BOUNDS FOR EIGENVALUES
    DUFFIN, RJ
    PHYSICAL REVIEW, 1947, 71 (11): : 827 - 828
  • [42] BOUNDS FOR STEKLOFF EIGENVALUES
    KUTTLER, JR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (01) : 121 - 125
  • [43] LOWER BOUNDS FOR EIGENVALUES
    BAZLEY, NW
    JOURNAL OF MATHEMATICS AND MECHANICS, 1961, 10 (02): : 289 - 307
  • [44] Bounds for the eigenvalues of matrices
    Zou, Limin
    Jiang, Youyi
    Italian Journal of Pure and Applied Mathematics, 2014, 32 : 519 - 524
  • [45] New bounds for chromatic polynomials and chromatic roots
    Brown, Jason
    Erey, Aysel
    DISCRETE MATHEMATICS, 2015, 338 (11) : 1938 - 1946
  • [46] Bounds for the Steklov eigenvalues
    Sheela Verma
    Archiv der Mathematik, 2018, 111 : 657 - 668
  • [47] On bounds of matrix eigenvalues
    Chen, Jinhai
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (04): : 723 - 726
  • [48] Bounds for the Steklov eigenvalues
    Verma, Sheela
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 657 - 668
  • [49] LOWER BOUNDS FOR EIGENVALUES
    WILSON, EB
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (10): : S172 - +
  • [50] MORE BOUNDS FOR EIGENVALUES
    DAY, WB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 46 (02) : 523 - 532