Bounds on eigenvalues and chromatic numbers

被引:0
|
作者
Cao, DS
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new bounds on eigenvalue of graphs which imply some known bounds. In particular, if T(G) is the maximum sum of degrees of vertices adjacent to a vertex in a graph G, the largest eigenvalue rho(G) of G satisfies rho(G) less than or equal to root T(G) with equality if and only if either G is regular or G is bipartite and such that all vertices in the same part have the same degree. Consequently, we prove that the chromatic number of G is at most root T(G) + 1 with equality if and only if G is an odd cycle or a complete graph, which implies Brook's theorem. A generalization of this result is also given. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets
    Prosanov, R. I.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 243 - 250
  • [22] Bounds on the k-independence and k-chromatic numbers of graphs
    Blidia, Mostafa
    Bouchou, Ahmed
    Volkmann, Lutz
    ARS COMBINATORIA, 2014, 113 : 33 - 46
  • [23] DUAL HOFFMAN BOUNDS FOR THE STABILITY AND CHROMATIC NUMBERS BASED ON SEMIDEFINITE PROGRAMMING
    Proenca, Nathan Benedetto
    Silva, Marcel K. de Carli
    Coutinho, Gabriel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2880 - 2907
  • [24] Bounds for Aα-eigenvalues
    da Silva Jr, Joao Domingos Gomes
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G. C.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2783 - 2798
  • [25] SOME UPPER-BOUNDS ON THE TOTAL AND LIST CHROMATIC-NUMBERS OF MULTIGRAPHS
    HAGGKVIST, R
    CHETWYND, A
    JOURNAL OF GRAPH THEORY, 1992, 16 (05) : 503 - 516
  • [26] The genus of G-spaces and topological lower bounds for chromatic numbers of hypergraphs
    Volovikov A.Yu.
    Journal of Mathematical Sciences, 2007, 144 (5) : 4387 - 4397
  • [27] THE CLIQUE AND COCLIQUE NUMBERS' BOUNDS BASED ON THE H-EIGENVALUES OF UNIFORM HYPERGRAPHS
    Xie, Jinshan
    Qi, Liqun
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 318 - 327
  • [28] Bounds for eigenvalues and condition numbers in the p-version of the finite element method
    Hu, N
    Guo, XZ
    Katz, IN
    MATHEMATICS OF COMPUTATION, 1998, 67 (224) : 1423 - 1450
  • [29] Chromatic Bounds on Orbital Chromatic Roots
    Kim, Dae Hyun
    Mun, Alexander H.
    Omar, Mohamed
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [30] Graphs with tiny vector chromatic numbers and huge chromatic numbers
    Feige, U
    Langberg, M
    Schechtman, G
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 283 - 292