Homogeneous geodesics and natural reductivity of homogeneous Godel-type spacetimes

被引:0
|
作者
Calvaruso, Giovanni [1 ]
Zaeim, Amirhesam [2 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Prov Lecce Arne, Italy
[2] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Homogeneous geodesics; g.o; spaces; manifolds; Naturally reductive spaces;
D O I
10.1016/j.geomphys.2020.103919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that all geodesics of homogeneous Godel-type metrics are homogeneous. This result makes natural to ask whether these spaces are naturally reductive, and a positive answer is provided for all of them through the study of their homogeneous Lorentzian structures. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] COMMENTS ON THE SOURCE OF GODEL-TYPE METRICS
    VAIDYA, EPV
    BEDRAN, ML
    SOM, MM
    PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (04): : 857 - 859
  • [42] A CLASS OF INHOMOGENEOUS GODEL-TYPE MODELS
    REBOUCAS, MJ
    TIOMNO, J
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 90 (02): : 204 - 210
  • [43] STABLY CAUSAL GODEL-TYPE MODELS
    MONTEIRO, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) : 3223 - 3227
  • [44] HIGHER DIMENSIONAL GODEL-TYPE COSMOLOGIES
    KRORI, KD
    GOSWAMI, D
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (4-5) : 361 - 364
  • [45] Godel and Godel-type universes in Brans-Dicke theory
    Agudelo, J. A.
    Nascimento, J. R.
    Petrov, A. Yu.
    Porfrio, P. J.
    Santosa, A. F.
    PHYSICS LETTERS B, 2016, 762 : 96 - 101
  • [46] Godel-type solutions in cubic Galileon gravity
    Nascimento, J. R.
    Petrov, A. Yu
    Porfirio, P.
    Santos, A. F.
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [47] Two-step Homogeneous Geodesics in Homogeneous Spaces
    Arvanitoyeorgos, Andreas
    Souris, Nikolaos Panagiotis
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (06): : 1313 - 1333
  • [48] Homogeneous Structures and Homogeneous Geodesics of the Hyperbolic Oscillator Group
    Calvaruso, Giovanni
    Zaeim, Amirhesam
    Jafari, Mehdi
    Baghgoli, Moslem
    AXIOMS, 2025, 14 (01)
  • [49] THE AFFINE APPROACH TO HOMOGENEOUS GEODESICS IN HOMOGENEOUS FINSLER SPACES
    Dusek, Zdenek
    ARCHIVUM MATHEMATICUM, 2018, 54 (05): : 257 - 263
  • [50] THE EXISTENCE OF HOMOGENEOUS GEODESICS IN SPECIAL HOMOGENEOUS FINSLER SPACES
    Dusek, Zdenek
    MATEMATICKI VESNIK, 2019, 71 (1-2): : 16 - 22