Homogeneous geodesics and natural reductivity of homogeneous Godel-type spacetimes

被引:0
|
作者
Calvaruso, Giovanni [1 ]
Zaeim, Amirhesam [2 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Prov Lecce Arne, Italy
[2] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Homogeneous geodesics; g.o; spaces; manifolds; Naturally reductive spaces;
D O I
10.1016/j.geomphys.2020.103919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that all geodesics of homogeneous Godel-type metrics are homogeneous. This result makes natural to ask whether these spaces are naturally reductive, and a positive answer is provided for all of them through the study of their homogeneous Lorentzian structures. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    Hosseini, M.
    Moghaddam, Hamid Reza Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 457 - 469
  • [32] On the Existence of Homogeneous Geodesics in Homogeneous Riemannian Manifolds
    Oldřich Kowalski
    János Szenthe
    Geometriae Dedicata, 2000, 81 : 209 - 214
  • [33] EXISTENCE OF HOMOGENEOUS GEODESICS ON HOMOGENEOUS RANDERS SPACES
    Yan, Zaili
    Deng, Shaoqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 481 - 493
  • [34] Homogeneous geodesics in homogeneous Riemannian manifolds - examples
    Kowalski, O
    Nikcevic, S
    Vlasek, Z
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 104 - 112
  • [35] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    M. Hosseini
    Hamid Reza Salimi Moghaddam
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 457 - 469
  • [36] On the existence of homogeneous geodesics in homogeneous Riemannian manifolds
    Kowalski, O
    Szenthe, J
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 209 - 214
  • [37] Godel-type metrics in various dimensions
    Gürses, M
    Karasu, A
    Sarioglu, Ö
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) : 1527 - 1543
  • [38] Godel and Godel-type universes in k-essence theory
    da Silva, J. G.
    Santos, A. F.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01):
  • [39] Godel-type universes in bumblebee gravity
    Jesus, W. D. R.
    Santos, A. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (09):
  • [40] Survey on homogeneous geodesics
    Dusek, Zdenek
    NOTE DI MATEMATICA, 2008, 28 : 147 - 168