Shape optimization solutions via Monge-Kantorovich equation

被引:67
|
作者
Bouchitte, G [1 ]
Buttazzo, G [1 ]
Seppecher, P [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
关键词
D O I
10.1016/S0764-4442(97)87909-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the optimization problem max{epsilon(mu) : mu nonnegative measure, integral d mu = m}, where epsilon(mu) is the energy associated to mu: epsilon(mu) = inf{1/2 integral \du\(2) d mu - [f, u] : u is an element of D(R-n)}. The datum f is a signed measure with finite total variation and zero average. We show that the optimization problem above admits a solution which is not in L-1(R-n) in general. This solution comes out by solving a suitable Monge-Kantorovich equation.
引用
收藏
页码:1185 / 1191
页数:7
相关论文
共 50 条
  • [31] On duality for a generalized Monge-Kantorovich problem
    Olubummo, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (02) : 253 - 263
  • [32] Frechet Barycenters in the Monge-Kantorovich Spaces
    Kroshnin, Alexey
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (04) : 1371 - 1395
  • [33] A mixed formulation of the Monge-Kantorovich equations
    Barrett, John W.
    Prigozhin, Leonid
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (06): : 1041 - 1060
  • [35] Limits for Monge-Kantorovich mass transport problems
    Garcia Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (04) : 853 - 865
  • [36] Grid Generation and Adaptation by Monge-Kantorovich Optimization in Two and Three Dimensions
    Finn, John M.
    Delzanno, Gian Luca
    Chacon, Luis
    PROCEEDINGS OF THE 17TH INTERNATIONAL MESHING ROUNDTABLE, 2008, : 551 - 568
  • [37] IMAGE SEGMENTATION VIA L1 MONGE-KANTOROVICH PROBLEM
    Li, Yupeng
    Li, Wuchen
    Cao, Guo
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (04) : 805 - 826
  • [38] Long History of the Monge-Kantorovich Transportation Problem
    Vershik, A. M.
    MATHEMATICAL INTELLIGENCER, 2013, 35 (04): : 1 - 9
  • [39] The Monge-Kantorovich problem: achievements, connections, and perspectives
    Bogachev, V. I.
    Kolesnikov, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (05) : 785 - 890
  • [40] A simple proof in Monge-Kantorovich duality theory
    Edwards, D. A.
    STUDIA MATHEMATICA, 2010, 200 (01) : 67 - 77