Shape optimization solutions via Monge-Kantorovich equation

被引:67
|
作者
Bouchitte, G [1 ]
Buttazzo, G [1 ]
Seppecher, P [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
关键词
D O I
10.1016/S0764-4442(97)87909-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the optimization problem max{epsilon(mu) : mu nonnegative measure, integral d mu = m}, where epsilon(mu) is the energy associated to mu: epsilon(mu) = inf{1/2 integral \du\(2) d mu - [f, u] : u is an element of D(R-n)}. The datum f is a signed measure with finite total variation and zero average. We show that the optimization problem above admits a solution which is not in L-1(R-n) in general. This solution comes out by solving a suitable Monge-Kantorovich equation.
引用
收藏
页码:1185 / 1191
页数:7
相关论文
共 50 条
  • [21] Solving the Monge and Monge-Kantorovich problems: Theory and examples
    Levin, VL
    DOKLADY MATHEMATICS, 2003, 67 (01) : 1 - 4
  • [22] On Generic Uniqueness of Optimal Solutions for the General Monge-Kantorovich Problem
    Vladimir L. Levin
    Set-Valued Analysis, 2001, 9 : 383 - 390
  • [23] Precise solutions of the one-dimensional Monge-Kantorovich problem
    Plakhov, AY
    SBORNIK MATHEMATICS, 2004, 195 (9-10) : 1291 - 1307
  • [24] On the Monge-Kantorovich problem and image warping
    Haker, S
    Tannenbaum, A
    MATHEMATICAL METHODS IN COMPUTER VISION, 2003, 133 : 65 - 85
  • [25] A Monge-Kantorovich approach to the Maxwell equations
    Brenier, Y
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 179 - 186
  • [26] Minimizing flows for the Monge-Kantorovich problem
    Angenent, S
    Haker, S
    Tannenbaum, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) : 61 - 97
  • [27] Numerical Solution of Monge-Kantorovich Equations via a Dynamic Formulation
    Facca, Enrico
    Daneri, Sara
    Cardin, Franco
    Putti, Mario
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [28] The Monge-Kantorovich Problem for Distributions and Applications
    Bouchitte, Guy
    Buttazzo, Giuseppe
    De Pascale, Luigi
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (3-4) : 925 - 943
  • [29] A NOTE ON THE MONGE-KANTOROVICH PROBLEM IN THE PLANE
    Xu, Zuo Quan
    Yan, Jia-An
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (02) : 517 - 525
  • [30] Monge-Kantorovich Approach for Grid Generation
    Sulman, Mohamed
    Williams, J. F.
    Russell, Robert D.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 25 - 28