Shape optimization solutions via Monge-Kantorovich equation

被引:67
|
作者
Bouchitte, G [1 ]
Buttazzo, G [1 ]
Seppecher, P [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
关键词
D O I
10.1016/S0764-4442(97)87909-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the optimization problem max{epsilon(mu) : mu nonnegative measure, integral d mu = m}, where epsilon(mu) is the energy associated to mu: epsilon(mu) = inf{1/2 integral \du\(2) d mu - [f, u] : u is an element of D(R-n)}. The datum f is a signed measure with finite total variation and zero average. We show that the optimization problem above admits a solution which is not in L-1(R-n) in general. This solution comes out by solving a suitable Monge-Kantorovich equation.
引用
收藏
页码:1185 / 1191
页数:7
相关论文
共 50 条