Fractional order Orlicz-Sobolev spaces

被引:112
|
作者
Fernandez Bonder, Julian [1 ]
Salort, Ariel M. [1 ,2 ]
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pabellon 1,Ave Cantilo S-N, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1,Ave Cantilo S-N, RA-1428 Buenos Aires, DF, Argentina
关键词
Fractional order Sobolev spaces; Orlicz-Sobolev spaces; g-Laplace operator; LEVY; EQUATIONS; BOUNDARY; PATTERNS; BOURGAIN; BREZIS;
D O I
10.1016/j.jfa.2019.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the fractional order Orlicz-Sobolev spaces, and prove its convergence to the classical OrliczSobolev spaces when the fractional parameter s up arrow 1 in the spirit of the celebrated result of Bourgain-Brezis-Mironescu. We then deduce some consequences such as Gamma-convergence of the modulars and convergence of solutions for some fractional versions of the Delta(g) operator as the fractional parameter s up arrow 1. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:333 / 367
页数:35
相关论文
共 50 条
  • [31] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47
  • [32] A Polya-Szego principle for general fractional Orlicz-Sobolev spaces
    De Napoli, Pablo
    Fernandez Bonder, Julian
    Salort, Ariel
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) : 546 - 568
  • [33] Removable Sets for Orlicz-Sobolev Spaces
    Nijjwal Karak
    Potential Analysis, 2015, 43 : 675 - 694
  • [34] AN APPROXIMATION THEOREM IN HIGHER-ORDER ORLICZ-SOBOLEV SPACES AND APPLICATIONS
    BENKIRANE, A
    GOSSEZ, JP
    STUDIA MATHEMATICA, 1989, 92 (03) : 231 - 255
  • [35] Density properties for Orlicz Sobolev spaces with fractional order
    Baalal, Azeddine
    El Wazna, Achraf
    Zaoui, Mohamed Amine
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (04) : 1715 - 1730
  • [36] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [37] NEMITSKY OPERATORS BETWEEN ORLICZ-SOBOLEV SPACES
    HARDY, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (02) : 251 - 269
  • [38] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [39] Multiple solutions in fractional Orlicz-Sobolev Spaces for a class of nonlocal Kirchhoff systems
    El-houari, Hamza
    Chadli, Lalla Saadia
    Moussa, Hicham
    FILOMAT, 2024, 38 (08) : 2857 - 2875
  • [40] On the modulus of continuity of fractional Orlicz-Sobolev functions
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 2429 - 2477