On the Fourier coefficients of meromorphic Jacobi forms

被引:6
|
作者
Olivetto, Rene [1 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
Meromorphic Jacobi forms; almost harmonic Maass forms; canonical Fourier coefficients;
D O I
10.1142/S1793042114500419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we describe the automorphic properties of the Fourier coefficients of meromorphic Jacobi forms. Extending results of Dabholkar, Murthy, and Zagier, and Bringmann and Folsom, we prove that the canonical Fourier coefficients of a meromorphic Jacobi form phi (z; tau) are the holomorphic parts of some (vector- valued) almost harmonic Maass forms. We also give a precise description of their completions, which turn out to be uniquely determined by the Laurent coefficients of phi at each pole, as well as some well-known real analytic functions, that appear for instance in the completion of Appell-Lerch sums.
引用
收藏
页码:1519 / 1540
页数:22
相关论文
共 50 条
  • [41] On products of Fourier coefficients of cusp forms
    Hofmann, Eric
    Kohnen, Winfried
    FORUM MATHEMATICUM, 2017, 29 (01) : 245 - 250
  • [42] SUMS OF FOURIER COEFFICIENTS OF CUSP FORMS
    Lau, Yuk-Kam
    Lue, Guangshi
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (03): : 687 - 716
  • [43] Remarks on the Fourier coefficients of modular forms
    Joshi, Kirti
    JOURNAL OF NUMBER THEORY, 2012, 132 (06) : 1314 - 1336
  • [44] FOURIER COEFFICIENTS OF CERTAIN CUSP FORMS
    WATABE, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (08): : 578 - 582
  • [45] ON THE FOURIER COEFFICIENTS OF MODULAR-FORMS
    ULMER, DL
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1995, 28 (02): : 129 - 160
  • [46] Eulerianity of fourier coefficients of automorphic forms
    Gourevitch, Dmitry
    Gustafsson, Henrik P.A.
    Kleinschmidt, Axel
    Persson, Daniel
    Sahi, Siddhartha
    arXiv, 2020,
  • [47] ON THE FOURIER COEFFICIENTS OF CERTAIN MODULAR FORMS
    RAMANATHAN, KG
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (05) : 523 - 523
  • [48] On signs of Fourier coefficients of cusp forms
    Matomaki, Kaisa
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 : 207 - 222
  • [49] A Jacobi meromorphic form
    Bayad, A
    Robert, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (05): : 455 - 460
  • [50] Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules
    Miranda C. N. Cheng
    John F. R. Duncan
    Communications in Mathematical Physics, 2019, 370 : 759 - 780