On the Fourier coefficients of meromorphic Jacobi forms

被引:6
|
作者
Olivetto, Rene [1 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
Meromorphic Jacobi forms; almost harmonic Maass forms; canonical Fourier coefficients;
D O I
10.1142/S1793042114500419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we describe the automorphic properties of the Fourier coefficients of meromorphic Jacobi forms. Extending results of Dabholkar, Murthy, and Zagier, and Bringmann and Folsom, we prove that the canonical Fourier coefficients of a meromorphic Jacobi form phi (z; tau) are the holomorphic parts of some (vector- valued) almost harmonic Maass forms. We also give a precise description of their completions, which turn out to be uniquely determined by the Laurent coefficients of phi at each pole, as well as some well-known real analytic functions, that appear for instance in the completion of Appell-Lerch sums.
引用
收藏
页码:1519 / 1540
页数:22
相关论文
共 50 条
  • [31] On the signs of Fourier coefficients of cusp forms
    Knopp, M
    Kohnen, W
    Pribitkin, W
    RAMANUJAN JOURNAL, 2003, 7 (1-3): : 269 - 277
  • [32] Parity of Fourier coefficients of modular forms
    Ono, K
    Wilson, B
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (01) : 142 - 150
  • [33] Automorphic forms with degenerate Fourier coefficients
    Li, JS
    AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (03) : 523 - 578
  • [34] Divisors of Fourier coefficients of modular forms
    Gun, Sanoli
    Murty, M. Ram
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 229 - 239
  • [35] On the Signs of Fourier Coefficients of Cusp Forms
    Marvin Knopp
    Winfried Kohnen
    Wladimir Pribitkin
    The Ramanujan Journal, 2003, 7 : 269 - 277
  • [36] ESTIMATES FOR FOURIER COEFFICIENTS OF CUSP FORMS
    RAGHAVAN, S
    WEISSAUER, R
    NUMBER THEORY AND DYNAMICAL SYSTEMS, 1989, 134 : 87 - 102
  • [37] FOURIER COEFFICIENTS OF MODULAR-FORMS
    MURTY, VK
    LECTURE NOTES IN MATHEMATICS, 1985, 1122 : 163 - 172
  • [38] ON THE FOURIER COEFFICIENTS OF SIEGEL MODULAR FORMS
    Boecherer, Siegfried
    Kohnen, Winfried
    NAGOYA MATHEMATICAL JOURNAL, 2019, 234 : 1 - 16
  • [39] EULERIANITY OF FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS
    Gourevitch, Dmitry
    Gustafsson, Henrik P. A.
    Kleinschmidt, Axel
    Persson, Daniel
    Sahi, Siddhartha
    REPRESENTATION THEORY, 2021, 25 : 481 - 507
  • [40] Nonvanishing of Fourier coefficients of modular forms
    Alkan, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) : 1673 - 1680