Multiple Trajectory Search for Large Scale Global Optimization

被引:194
|
作者
Tseng, Lin-Yu [1 ]
Chen, Chun [2 ]
机构
[1] Natl Chung Hsing Univ, Inst Networking & Multimedia, Dept Comp Sci & Engn, 250 Kuo Kuang Rd, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Dept Comp Sci & Engn, Taichung 402, Taiwan
关键词
D O I
10.1109/CEC.2008.4631210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the multiple trajectory search (NITS) is presented for large scale global optimization. The NITS uses multiple agents to search the solution space concurrently. Each agent does an iterated local search using one of three candidate local search methods. By choosing a local search method that best fits the landscape of a solution's neighborhood, an agent may rind its way to a local optimum or the global optimum. We applied the NITS to the seven benchmark problems designed for the CEC 2008 Special Session and Competition on Large Scale Global Optimization.
引用
收藏
页码:3052 / +
页数:4
相关论文
共 50 条
  • [31] Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization
    Zhao, S. Z.
    Liang, J. J.
    Suganthan, P. N.
    Tasgetiren, M. F.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3845 - +
  • [32] A Dynamic Vortex Search Algorithm of Flow Field Attraction for Large-Scale Complex Global Optimization
    Liu J.-S.
    Li H.-R.
    Li Y.
    Zhou H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (07): : 1949 - 1955
  • [33] Self-adaptive Differential Evolution with Modified Multi-Trajectory Search for CEC'2010 Large Scale Optimization
    Zhao, Shi-Zheng
    Suganthan, Ponnuthurai Nagaratnam
    Das, Swagatam
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 1 - +
  • [34] Rank-Based Differential Evolution with Multiple Mutation Strategies for Large Scale Global Optimization
    Kushida, Jun-ichi
    Hara, Akira
    Takahama, Tetsuyuki
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 353 - 360
  • [35] A reassessment of the Snyman–Fatti dynamic search trajectory method for unconstrained global optimization
    J. A. Snyman
    S. Kok
    Journal of Global Optimization, 2009, 43 : 67 - 82
  • [36] The practical application of a dynamic search-trajectory method for constrained global optimization
    Snyman, JA
    Geerthsen, KA
    IUTAM SYMPOSIUM ON OPTIMIZATION OF MECHANICAL SYSTEMS, 1996, 43 : 285 - 292
  • [37] A novel three-phase trajectory informed search methodology for global optimization
    Jaewook Lee
    Journal of Global Optimization, 2007, 38 : 61 - 77
  • [38] Enhancing the search ability of a hybrid LSHADE for global optimization of interplanetary trajectory design
    Tang, Zhe
    Peng, Lei
    Dai, Guangming
    Wang, Panpan
    Zhao, Yuwei
    Yang, Haozhe
    Pu, Zhuoying
    Zuo, Mingcheng
    ENGINEERING OPTIMIZATION, 2023, 55 (04) : 632 - 649
  • [40] Issues in large-scale global molecular optimization
    More, JJ
    Wu, ZJ
    LARGE-SCALE OPTIMIZATION WITH APPLICATIONS, PT 3: MOLECULAR STRUCTURE AND OPTIMIZATION, 1997, 94 : 99 - 121