Multiple Trajectory Search for Large Scale Global Optimization

被引:194
|
作者
Tseng, Lin-Yu [1 ]
Chen, Chun [2 ]
机构
[1] Natl Chung Hsing Univ, Inst Networking & Multimedia, Dept Comp Sci & Engn, 250 Kuo Kuang Rd, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Dept Comp Sci & Engn, Taichung 402, Taiwan
关键词
D O I
10.1109/CEC.2008.4631210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the multiple trajectory search (NITS) is presented for large scale global optimization. The NITS uses multiple agents to search the solution space concurrently. Each agent does an iterated local search using one of three candidate local search methods. By choosing a local search method that best fits the landscape of a solution's neighborhood, an agent may rind its way to a local optimum or the global optimum. We applied the NITS to the seven benchmark problems designed for the CEC 2008 Special Session and Competition on Large Scale Global Optimization.
引用
收藏
页码:3052 / +
页数:4
相关论文
共 50 条
  • [11] Sequential DE Enhanced by Neighborhood Search for Large Scale Global Optimization
    Wang, Hui
    Wu, Zhijian
    Rahnamayan, Shahryar
    Jiang, Dazhi
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [12] Simplified group search optimizer algorithm for large scale global optimization
    Zhang W.-F.
    Journal of Shanghai Jiaotong University (Science), 2015, 20 (01) : 38 - 43
  • [13] Memetic Algorithm with Adaptive Local Search Depth for Large Scale Global Optimization
    Liu, Can
    Li, Bin
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 82 - 88
  • [14] A Coral Reefs Optimization Algorithm with Substrate Layers and Local Search for Large Scale Global Optimization
    Salcedo-Sanz, S.
    Camacho-Gomez, C.
    Molina, D.
    Herrera, F.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3574 - 3581
  • [15] Adoptive Population Differential Evolution with Local Search for Solving Large Scale Global Optimization
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1090 - 1094
  • [16] Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
    Zhao, Shi-Zheng
    Suganthan, Ponnuthurai Nagaratnam
    Das, Swagatam
    SOFT COMPUTING, 2011, 15 (11) : 2175 - 2185
  • [17] Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
    Shi-Zheng Zhao
    Ponnuthurai Nagaratnam Suganthan
    Swagatam Das
    Soft Computing, 2011, 15 : 2175 - 2185
  • [18] Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization
    Abdelouahab Necira
    Djemai Naimi
    Ahmed Salhi
    Souhail Salhi
    Smail Menani
    Evolutionary Intelligence, 2022, 15 : 2153 - 2169
  • [19] An Effective Cooperative Coevolution Framework Integrating Global and Local Search for Large Scale Optimization Problems
    Cao, Zijian
    Wang, Lei
    Shi, Yuhui
    Hei, Xinhong
    Rong, Xiaofeng
    Jiang, Qiaoyong
    Li, Hongye
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1986 - 1993
  • [20] Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization
    Necira, Abdelouahab
    Naimi, Djemai
    Salhi, Ahmed
    Salhi, Souhail
    Menani, Smail
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 2153 - 2169