Multiple Trajectory Search for Large Scale Global Optimization

被引:194
|
作者
Tseng, Lin-Yu [1 ]
Chen, Chun [2 ]
机构
[1] Natl Chung Hsing Univ, Inst Networking & Multimedia, Dept Comp Sci & Engn, 250 Kuo Kuang Rd, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Dept Comp Sci & Engn, Taichung 402, Taiwan
关键词
D O I
10.1109/CEC.2008.4631210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the multiple trajectory search (NITS) is presented for large scale global optimization. The NITS uses multiple agents to search the solution space concurrently. Each agent does an iterated local search using one of three candidate local search methods. By choosing a local search method that best fits the landscape of a solution's neighborhood, an agent may rind its way to a local optimum or the global optimum. We applied the NITS to the seven benchmark problems designed for the CEC 2008 Special Session and Competition on Large Scale Global Optimization.
引用
收藏
页码:3052 / +
页数:4
相关论文
共 50 条
  • [1] Cooperative Coevolution with Global Search for Large Scale Global Optimization
    Zhang, Kaibo
    Li, Bin
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [2] Multiple Offspring Sampling In Large Scale Global Optimization
    LaTorre, Antonio
    Muelas, Santiago
    Pena, Jose-Maria
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [3] An Analysis of Minimum Population Search on Large Scale Global Optimization
    Bolufe-Rohler, Antonio
    Chen, Stephen
    Tamayo-Vera, Dania
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1228 - 1235
  • [4] A Minimum Population Search Hybrid for Large Scale Global Optimization
    Bolufe-Rohler, Antonio
    Fiol-Gonzalez, Sonia
    Chen, Stephen
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1958 - 1965
  • [5] Multiple trajectory search for multiobjective optimization
    Tseng, Lin-Yu
    Chen, Chun
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 3609 - +
  • [6] Dynamic search trajectory methods for global optimization
    Alexandropoulos, Stamatios-Aggelos N.
    Pardalos, Panos M.
    Vrahatis, Michael N.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (1-3) : 3 - 37
  • [7] Dynamic search trajectory methods for global optimization
    Stamatios-Aggelos N. Alexandropoulos
    Panos M. Pardalos
    Michael N. Vrahatis
    Annals of Mathematics and Artificial Intelligence, 2020, 88 : 3 - 37
  • [9] Extending Minimum Population Search towards Large Scale Global Optimization
    Bolufe-Roehler, Antonio
    Chen, Stephen
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 845 - 852
  • [10] SHADE with Iterative Local Search for Large-Scale Global Optimization
    Molina, Daniel
    LaTorre, Antonio
    Herrera, Francisco
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1252 - 1259