Automatic Segmentation of Cortex and Nucleus in Anterior Segment OCT Images

被引:6
|
作者
Yin, Pengshuai [1 ]
Tan, Mingkui [1 ]
Min, Huaqing [1 ]
Xu, Yanwu [2 ,4 ]
Xu, Guanghui [1 ]
Wu, Qingyao [1 ]
Tong, Yunfei [2 ]
Risa, Higashita [3 ]
Liu, Jiang [4 ]
机构
[1] South China Univ Technol, Guangzhou, Guangdong, Peoples R China
[2] Guangzhou Shiyuan Elect Technol Co Ltd, Guangzhou, Guangdong, Peoples R China
[3] Tommy Corp, Nagoya, Aichi, Japan
[4] Chinese Acad Sci, Cixi Inst Biomed Engn, Cixi, Peoples R China
关键词
SS-OCT; AS-OCT; Image segmentation; QUANTIFICATION;
D O I
10.1007/978-3-030-00949-6_32
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a pipeline for automatically segmenting cortex and nucleus in a 360-degree anterior segment optical coherence tomography (AS-OCT) image. The proposed pipeline consists of a U-shaped network followed by a shape template. The U-shaped network predicts a mask for cortex and nucleus. However, the boundary between cortex and nucleus is weak, so that the boundary of the prediction is an irregular shape and does not satisfy the physiological structure of nucleus. To address this problem, in the second step, we design a shape template according to the physiological structure of nucleus to refine the boundary. Our method integrates both appearance and structure information. The accuracy is measured by the normalized mean squared error (NMSE) between ground truth line and predicted line. We achieve NMSE 7.09/7.94 for nucleus top/bottom boundary and 2.49/2.43 for cortex top/bottom boundary.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [31] A deep learning-based segmentation method of anterior segment in SS-OCT
    Kharat, Rohit
    Callan, Thomas
    Nafar, Zahra
    Bagherinia, Homayoun
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [32] Analysis of anterior chamber inflammation through automated quantitative assessment of sweptsource anterior segment OCT images
    Pillar, Shani
    Kadomoto, Shin
    Cherian, Nina
    Privratsky, Joseph
    Zargari, Nicolette
    Chen, Keren
    Jackson, Nicholas
    Gonzalez, Saitiel Sandoval
    Corradetti, Giulia
    Sadda, SriniVas
    Holland, Gary
    Tsui, Edmund
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [33] Evaluation of waterclefts by anterior segment OCT
    Miyashita, Hisanori
    Osada, Hiromi
    Shibuya, Eri
    Tanimura, Naoki
    Shibata, Teppei
    Sasaki, Kazuyuki
    Kubo, Eri
    Sasaki, Hiroshi
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [34] Supernumerary punctum and anterior segment OCT
    Sharma, Abhimanyu
    Ali, Mohammad Javed
    ORBIT-THE INTERNATIONAL JOURNAL ON ORBITAL DISORDERS-OCULOPLASTIC AND LACRIMAL SURGERY, 2024, 43 (05): : 688 - 688
  • [35] Automatic choroidal segmentation in OCT images using supervised deep learning methods
    Kugelman, Jason
    Alonso-Caneiro, David
    Read, Scott A.
    Hamwood, Jared
    Vincent, Stephen J.
    Chen, Fred K.
    Collins, Michael J.
    SCIENTIFIC REPORTS, 2019, 9
  • [36] Semi-automatic geographic atrophy segmentation for SD-OCT images
    Chen, Qiang
    de Sisternes, Luis
    Leng, Theodore
    Zheng, Luoluo
    Kutzscher, Lauren
    Rubin, Daniel L.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (12): : 2729 - 2750
  • [37] Two stage contour evolution for automatic segmentation of choroid and cornea in OCT images
    George, Neetha
    Jiji, C., V
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2019, 39 (03) : 686 - 696
  • [38] Automatic Segmentation of Hyperreflective Foci in OCT Images Based on Lightweight DBR Network
    Jin Wei
    Suqin Yu
    Yuchen Du
    Kun Liu
    Yupeng Xu
    Xun Xu
    Journal of Digital Imaging, 2023, 36 : 1148 - 1157
  • [39] Automatic Segmentation of Hyperreflective Foci in OCT Images Based on Lightweight DBR Network
    Wei, Jin
    Yu, Suqin
    Du, Yuchen
    Liu, Kun
    Xu, Yupeng
    Xu, Xun
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 1148 - 1157
  • [40] Automatic choroidal segmentation in OCT images using supervised deep learning methods
    Jason Kugelman
    David Alonso-Caneiro
    Scott A. Read
    Jared Hamwood
    Stephen J. Vincent
    Fred K. Chen
    Michael J. Collins
    Scientific Reports, 9