Automatic Segmentation of Cortex and Nucleus in Anterior Segment OCT Images

被引:6
|
作者
Yin, Pengshuai [1 ]
Tan, Mingkui [1 ]
Min, Huaqing [1 ]
Xu, Yanwu [2 ,4 ]
Xu, Guanghui [1 ]
Wu, Qingyao [1 ]
Tong, Yunfei [2 ]
Risa, Higashita [3 ]
Liu, Jiang [4 ]
机构
[1] South China Univ Technol, Guangzhou, Guangdong, Peoples R China
[2] Guangzhou Shiyuan Elect Technol Co Ltd, Guangzhou, Guangdong, Peoples R China
[3] Tommy Corp, Nagoya, Aichi, Japan
[4] Chinese Acad Sci, Cixi Inst Biomed Engn, Cixi, Peoples R China
关键词
SS-OCT; AS-OCT; Image segmentation; QUANTIFICATION;
D O I
10.1007/978-3-030-00949-6_32
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a pipeline for automatically segmenting cortex and nucleus in a 360-degree anterior segment optical coherence tomography (AS-OCT) image. The proposed pipeline consists of a U-shaped network followed by a shape template. The U-shaped network predicts a mask for cortex and nucleus. However, the boundary between cortex and nucleus is weak, so that the boundary of the prediction is an irregular shape and does not satisfy the physiological structure of nucleus. To address this problem, in the second step, we design a shape template according to the physiological structure of nucleus to refine the boundary. Our method integrates both appearance and structure information. The accuracy is measured by the normalized mean squared error (NMSE) between ground truth line and predicted line. We achieve NMSE 7.09/7.94 for nucleus top/bottom boundary and 2.49/2.43 for cortex top/bottom boundary.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [21] Automatic Robust Segmentation of Retinal Layers in OCT Images with Refinement Stages
    Gonzalez-Lopez, Ana
    Ortega, Marcos
    Penedo, Manuel G.
    Charlon, Pablo
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II, 2014, 8815 : 337 - 345
  • [22] Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images
    Diaz, Macarena
    Novo, Jorge
    Cutrin, Paula
    Gomez-Ulla, Francisco
    Penedo, Manuel G.
    Ortega, Marcos
    PLOS ONE, 2019, 14 (02):
  • [23] Automatic three-dimensional segmentation of endoscopic airway OCT images
    Qi, Li
    Zheng, Kaibin
    Li, Xipan
    Feng, Qianjin
    Chen, Zhongping
    Chen, Wufan
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02): : 642 - 656
  • [24] Automatic vessel lumen segmentation in optical coherence tomography (OCT) images
    Zhang, Huaizhong
    Essa, Ehab
    Xie, Xianghua
    APPLIED SOFT COMPUTING, 2020, 88
  • [25] Automatic Retinal Layer Segmentation of OCT Images With Central Serous Retinopathy
    Xiang, Dehui
    Chen, Geng
    Shi, Fei
    Zhu, Weifang
    Liu, Qinghuai
    Yuan, Songtao
    Chen, Xinjian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (01) : 283 - 295
  • [26] Automatic Anterior Chamber Angle Assessment for HD-OCT Images
    Tian, Jing
    Marziliano, Pina
    Baskaran, Mani
    Wong, Hong-Tym
    Aung, Tin
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (11) : 3242 - 3249
  • [27] An Automatic Segmentation Algorithm for Extracting Cell Nucleus of Microscopic Images
    Chen, Guannan
    Hu, Hengyang
    Liu, Yao
    Li, Yan
    Gong, Haiming
    INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING BIOMEDICAL ENGINEERING, AND INFORMATICS (SPBEI 2013), 2014, : 383 - 389
  • [28] Real-time Scene Understanding in Ophthalmic Anterior Segment OCT Images
    Roodaki, Hessam
    Grimm, Matthias
    Navab, Nassir
    Eslami, Abouzar
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [29] Quality assessment of anterior segment OCT images: development and validation of quality criteria
    Patel, Radhika
    Petrushkin, Harry
    Etherton, Katie
    Terence, Katherine
    Nizam, Karim
    Dick, Andrew
    Rahi, Jugnoo
    Solebo, Ameenat
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [30] Semantic Segmentation and Image Quality Assessment of Anterior Segment Images for Smartphones
    Chen, Yuanhao
    Huang, Kun
    Fan, Wen
    Chen, Qiang
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705