Exploring the long-term changes in the Madden Julian Oscillation using machine learning

被引:25
|
作者
Dasgupta, Panini [1 ,2 ]
Metya, Abirlal [1 ,3 ]
Naidu, C. V. [2 ]
Singh, Manmeet [1 ,4 ]
Roxy, M. K. [1 ]
机构
[1] Indian Inst Trop Meteorol, Ctr Climate Change Res, MoES, Pune 411008, Maharashtra, India
[2] Andhra Univ, Dept Meteorol & Oceanog, Coll Sci & Technol, Visakhapatnam 530003, Andhra Pradesh, India
[3] Savitribai Phule Pune Univ, Dept Atmospher & Space Sci, Pune 411007, Maharashtra, India
[4] Indian Inst Technol, IDP Climate Studies, Mumbai, Maharashtra, India
关键词
MOISTURE MODES; MJO; VARIABILITY;
D O I
10.1038/s41598-020-75508-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Madden Julian Oscillation (MJO), the dominant subseasonal variability in the tropics, is widely represented using the Real-time Multivariate MJO (RMM) index. The index is limited to the satellite era (post-1974) as its calculation relies on satellite-based observations. Oliver and Thompson (J Clim 25:1996-2019, 2012) extended the RMM index for the twentieth century, employing a multilinear regression on the sea level pressure (SLP) from the NOAA twentieth century reanalysis. They obtained an 82.5% correspondence with the index in the satellite era. In this study, we show that the historical MJO index can be successfully reconstructed using machine learning techniques and improved upon. We obtain a significant improvement of up to 4%, using the support vector regressor (SVR) and convolutional neural network (CNN) methods on the same set of predictors used by Oliver and Thompson. Based on the improved RMM indices, we explore the long-term changes in the intensity, phase occurrences, and frequency of the winter MJO events during 1905-2015. We show an increasing trend in MJO intensity (22-27%) during this period. We also find a multidecadal change in MJO phase occurrence and periodicity corresponding to the Pacific Decadal Oscillation (PDO), while the role of anthropogenic warming cannot be ignored.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] LONG-TERM OSCILLATION IN GLYCOLYSIS
    DAS, J
    BUSSE, HG
    JOURNAL OF BIOCHEMISTRY, 1985, 97 (03): : 719 - 727
  • [42] A mechanism-denial study on the Madden-Julian Oscillation with reduced interference from mean state changes
    Ma, D.
    Kuang, Z.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (06) : 2989 - 2997
  • [43] Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques
    Penso, Marco
    Pepi, Mauro
    Fusini, Laura
    Muratori, Manuela
    Cefalu, Claudia
    Mantegazza, Valentina
    Gripari, Paola
    Ali, Sarah Ghulam
    Fabbiocchi, Franco
    Bartorelli, Antonio L.
    Caiani, Enrico G.
    Tamborini, Gloria
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2021, 8 (04)
  • [44] Using Machine Learning to Better Model Long-Term Care Insurance Claims
    Cummings, Jared
    Hartman, Brian
    NORTH AMERICAN ACTUARIAL JOURNAL, 2022, 26 (03) : 470 - 483
  • [45] Long-term prediction of hourly indoor air temperature using machine learning
    Laukkarinen, Anssi
    Vinha, Juha
    ENERGY AND BUILDINGS, 2024, 325
  • [46] Predicting the long-term outcomes of biologics in patients with psoriasis using machine learning
    Emam, S.
    Du, A. X.
    Surmanowicz, P.
    Thomsen, S. F.
    Greiner, R.
    Gniadecki, R.
    BRITISH JOURNAL OF DERMATOLOGY, 2020, 182 (05) : 1305 - 1307
  • [47] Predicting the long-term outcomes of biologics in psoriasis patients using machine learning
    Surmanowicz, Philip
    Emam, Sepideh
    Du, Amy
    Thomsen, Simon Francis
    Greiner, Russell
    Gniadecki, Robert
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2020, 83 (06) : AB86 - AB86
  • [48] Predicting the long-term outcomes of biologics in psoriasis patients using machine learning
    Emam, S.
    Du, A.
    Surmanowicz, P.
    Thomsen, S.
    Griener, R.
    Gniadecki, R.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2020, 140 (07) : S69 - S69
  • [49] Responses of the Madden-Julian Oscillation to Global Warming: Impacts from Tropical Sea Surface Temperature Changes
    Bui, Hien X.
    Li, Yi-Xian
    Zhou, Wenyu
    Van Rensch, Peter
    JOURNAL OF CLIMATE, 2024, 37 (02) : 605 - 617
  • [50] Blind use of reanalysis data: apparent trends in Madden-Julian Oscillation activity driven by observational changes
    Oliver, Eric C. J.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (10) : 3458 - 3468