Exploring the long-term changes in the Madden Julian Oscillation using machine learning

被引:25
|
作者
Dasgupta, Panini [1 ,2 ]
Metya, Abirlal [1 ,3 ]
Naidu, C. V. [2 ]
Singh, Manmeet [1 ,4 ]
Roxy, M. K. [1 ]
机构
[1] Indian Inst Trop Meteorol, Ctr Climate Change Res, MoES, Pune 411008, Maharashtra, India
[2] Andhra Univ, Dept Meteorol & Oceanog, Coll Sci & Technol, Visakhapatnam 530003, Andhra Pradesh, India
[3] Savitribai Phule Pune Univ, Dept Atmospher & Space Sci, Pune 411007, Maharashtra, India
[4] Indian Inst Technol, IDP Climate Studies, Mumbai, Maharashtra, India
关键词
MOISTURE MODES; MJO; VARIABILITY;
D O I
10.1038/s41598-020-75508-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Madden Julian Oscillation (MJO), the dominant subseasonal variability in the tropics, is widely represented using the Real-time Multivariate MJO (RMM) index. The index is limited to the satellite era (post-1974) as its calculation relies on satellite-based observations. Oliver and Thompson (J Clim 25:1996-2019, 2012) extended the RMM index for the twentieth century, employing a multilinear regression on the sea level pressure (SLP) from the NOAA twentieth century reanalysis. They obtained an 82.5% correspondence with the index in the satellite era. In this study, we show that the historical MJO index can be successfully reconstructed using machine learning techniques and improved upon. We obtain a significant improvement of up to 4%, using the support vector regressor (SVR) and convolutional neural network (CNN) methods on the same set of predictors used by Oliver and Thompson. Based on the improved RMM indices, we explore the long-term changes in the intensity, phase occurrences, and frequency of the winter MJO events during 1905-2015. We show an increasing trend in MJO intensity (22-27%) during this period. We also find a multidecadal change in MJO phase occurrence and periodicity corresponding to the Pacific Decadal Oscillation (PDO), while the role of anthropogenic warming cannot be ignored.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Changes in the Eastward Movement Speed of the Madden-Julian Oscillation with Fluctuation in the Walker Circulation
    SUEMATSU, T. A. M. A. K. I.
    MIURA, H. I. R. O. A. K. I.
    JOURNAL OF CLIMATE, 2022, 35 (01) : 211 - 225
  • [22] A Modified Multivariate Madden-Julian Oscillation Index Using Velocity Potential
    Ventrice, Michael J.
    Wheeler, Matthew C.
    Hendon, Harry H.
    Schreck, Carl J., III
    Thorncroft, Chris D.
    Kiladis, George N.
    MONTHLY WEATHER REVIEW, 2013, 141 (12) : 4197 - 4210
  • [23] Using Simple, Explainable Neural Networks to Predict the Madden-Julian Oscillation
    Martin, Zane K.
    Barnes, Elizabeth A.
    Maloney, Eric
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (05)
  • [24] LONG-TERM PREDICTION OF DEMENTIA USING MACHINE LEARNING ALGORITHMS
    Berglund, Johan Sanmartin
    Javeed, Ashir
    INNOVATION IN AGING, 2022, 6 : 243 - 243
  • [25] DECADAL CHANGES IN WESTERN NORTH PACIFIC TROPICAL CYCLONES ASSOCIATED WITH MADDEN-JULIAN OSCILLATION
    Zhao Wei
    Wei Zhi-gang
    Zhao Hai-kun
    Zheng Zhi-yuan
    Wang Ji
    JOURNAL OF TROPICAL METEOROLOGY, 2016, 22 (02) : 109 - 117
  • [26] DECADAL CHANGES IN WESTERN NORTH PACIFIC TROPICAL CYCLONES ASSOCIATED WITH MADDEN-JULIAN OSCILLATION
    赵威
    韦志刚
    赵海坤
    郑志远
    王冀
    JournalofTropicalMeteorology, 2016, 22 (02) : 109 - 117
  • [27] Analysis of rainfall characteristics of the Madden-Julian oscillation using TRMM satellite data
    Morita, Juntaro
    Takayabu, Yukari N.
    Shige, Shoichi
    Kodama, Yasumasa
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2006, 42 (1-4) : 107 - 126
  • [28] Testing the reliability of interpretable neural networks in geoscience using the Madden-Julian oscillation
    Toms, Benjamin A.
    Kashinath, Karthik
    Prabhat
    Yang, Da
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4495 - 4508
  • [29] Prediction of Long-Term Stroke Recurrence Using Machine Learning Models
    Abedi, Vida
    Avula, Venkatesh
    Chaudhary, Durgesh
    Shahjouei, Shima
    Khan, Ayesha
    Griessenauer, Christoph J.
    Li, Jiang
    Zand, Ramin
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (06) : 1 - 16
  • [30] Long-term mortality prediction in patients with cirrhosis using machine learning
    Huang, Alexander
    Polineni, Praneet
    Hasjim, Bima
    Dehchesmeh, Mohsen
    Olson, Sydney
    Zhao, Lihui
    Guo, Kexin
    Jung, Jonathan
    Mehrotra, Sanjay
    Ladner, Daniela
    AMERICAN JOURNAL OF TRANSPLANTATION, 2023, 23 (01) : S28 - S29