Parametric Myocardial Perfusion PET Imaging using Physiological Clustering

被引:0
|
作者
Mohy-ud-Din, Hassan [1 ,2 ]
Karakatsanis, Nikolaos A. [2 ]
Lodge, Martin A. [2 ]
Tang, Jing [3 ]
Rahmim, Arman [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Baltimore, MD 21218 USA
[3] Oakland Univ, Dept Elect & Comp Engn, Oakland, CA USA
关键词
myocardial perfusion; coronary flow reserve; coronary artery stenosis; coronary artery disease; PET; K-means clustering; spectral clustering; physiological clustering; penalized least squares; DYNAMIC PET; BLOOD-FLOW; IMAGES; RB-82; QUANTIFICATION; RECONSTRUCTION; SEGMENTATION; DISEASE; RESERVE; BURDEN;
D O I
10.1117/12.2043947
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a novel framework of robust kinetic parameter estimation applied to absolute flow quantification in dynamic PET imaging. Kinetic parameter estimation is formulated as a nonlinear least squares with spatial constraints problem (NLLS-SC) where the spatial constraints are computed from a physiologically driven clustering of dynamic images, and used to reduce noise contamination. An ideal clustering of dynamic images depends on the underlying physiology of functional regions, and in turn, physiological processes are quantified by kinetic parameter estimation. Physiologically driven clustering of dynamic images is performed using a clustering algorithm (e.g. K-means, Spectral Clustering etc) with Kinetic modeling in an iterative handshaking fashion. This gives a map of labels where each functionally homogenous cluster is represented by mean kinetics (cluster centroid). Parametric images are acquired by solving the NLLS-SC problem for each voxel which penalizes spatial variations from its mean kinetics. This substantially reduces noise in the estimation process for each voxel by utilizing kinetic information from physiologically similar voxels (cluster members). Resolution degradation is also substantially minimized as no spatial smoothing between heterogeneous functional regions is performed. The proposed framework is shown to improve the quantitative accuracy of Myocardial Perfusion (MP) PET imaging, and in turn, has the long-term potential to enhance capabilities of MP PET in the detection, staging and management of coronary artery disease.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Myocardial perfusion imaging using PET/CT
    Dunet, V.
    Prior, J. -O.
    [J]. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2011, 35 (05): : 336 - 343
  • [2] Quantitative myocardial perfusion PET parametric imaging at the voxel-level
    Mohy-ud-Din, Hassan
    Lodge, Martin
    Rahmim, Arman
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03):
  • [3] Quantitative myocardial perfusion PET parametric imaging at the voxel-level
    Mohy-ud-Din, Hassan
    Lodge, Martin A.
    Rahmim, Arman
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (15): : 6013 - 6037
  • [4] Myocardial perfusion imaging with PET
    Driessen, Roel S.
    Raijmakers, Pieter G.
    Stuijfzand, Wijnand J.
    Knaapen, Paul
    [J]. INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2017, 33 (07): : 1021 - 1031
  • [5] Myocardial perfusion imaging with PET
    Roel S. Driessen
    Pieter G. Raijmakers
    Wijnand J. Stuijfzand
    Paul Knaapen
    [J]. The International Journal of Cardiovascular Imaging, 2017, 33 : 1021 - 1031
  • [6] MYOCARDIAL PERFUSION IMAGING WITH PET
    SCHWAIGER, M
    [J]. JOURNAL OF NUCLEAR MEDICINE, 1994, 35 (04): : 693 - 698
  • [7] Sparsity Constrained Direct Parametric Reconstruction in Dynamic PET Myocardial Perfusion Imaging
    Yang, Bao
    Tang, Jing
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [8] Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies
    Petibon, Yoann
    Rakvongthai, Yothin
    El Fakhri, Georges
    Ouyang, Jinsong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (09): : 3539 - 3565
  • [9] Value of Digital PET in Myocardial Perfusion Imaging Using Rubidium-82 PET
    Koenders, S. S.
    van Dalen, J. A.
    Jager, P. L.
    Knollema, S.
    Timmer, J. R.
    Slump, C. H.
    van Dijk, J. D.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S19 - S19
  • [10] Improved myocardial perfusion PET imaging using artificial neural networks
    Wang, Xinhui
    Yang, Bao
    Moody, Jonathan B.
    Tang, Jing
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (14):