Quantum graphs as holonomic constraints

被引:15
|
作者
Dell'Antonio, Gianfausto
Tenuta, Lucattilio
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
D O I
10.1063/1.2213789
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the dynamics on a quantum graph as the limit of the dynamics generated by a one-particle Hamiltonian in R-2 with a potential having a deep strict minimum on the graph, when the width of the well shrinks to zero. For a generic graph we prove convergence outside the vertices to the free dynamics on the edges. For a simple model of a graph with two edges and one vertex, we prove convergence of the dynamics to the one generated by the Laplacian with Dirichlet boundary conditions in the vertex.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] NEW METHOD OF STABILIZATION FOR HOLONOMIC CONSTRAINTS.
    Baumgarte, J.W.
    1600, (50):
  • [32] Modeling and structural control of a building with holonomic constraints
    Rengifo, Carlos F.
    Bravo, Diego A.
    AUSTRALIAN JOURNAL OF STRUCTURAL ENGINEERING, 2022, 23 (04) : 324 - 337
  • [33] Hamilton’s principle and Hamilton’s equations with holonomic and non-holonomic constraints
    Earl Dowell
    Nonlinear Dynamics, 2017, 88 : 1093 - 1097
  • [34] A new classification of non-holonomic constraints
    Chen, B
    Wang, LS
    Chu, SS
    Chou, WT
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1958): : 631 - 642
  • [35] Feedback Integrators for Mechanical Systems with Holonomic Constraints
    Chang, Dong Eui
    Perlmutter, Matthew
    Vankerschaver, Joris
    SENSORS, 2022, 22 (17)
  • [36] Scleronomic holonomic constraints and conservative nonlinear oscillators
    Munoz, R.
    Gonzalez-Garcia, G.
    Izquierdo-De La Cruz, E.
    Fernandez-Anaya, G.
    EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (03) : 803 - 818
  • [37] ON THE CONTROL OF NON HOLONOMIC SYSTEMS BY ACTIVE CONSTRAINTS
    Bressan, Alberto
    Han, Ke
    Rampazzo, Franco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (08) : 3329 - 3353
  • [38] Distance and angular holonomic constraints in molecular simulations
    Dubbeldam, David
    Oxford, Gloria A. E.
    Krishna, Rajamani
    Broadbelt, Linda J.
    Snurr, Randall Q.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (03):
  • [39] Hamilton's principle and Hamilton's equations with holonomic and non-holonomic constraints
    Dowell, Earl
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1093 - 1097
  • [40] Human gait modeling: Dealing with holonomic constraints
    Hu, TS
    Lin, ZL
    Abel, MF
    Allaire, PE
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 2296 - 2301