On the choice of local element frame for corotational triangular shell elements

被引:27
|
作者
Battini, JM [1 ]
Pacoste, C
机构
[1] Royal Inst Technol, KTH, Dept Mech, SE-10044 Stockholm, Sweden
[2] Swedish Natl Rd Adm Consulting Serv, SE-17104 Solna, Sweden
来源
关键词
corotational formulation; shell finite elements;
D O I
10.1002/cnm.710
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the context of corotational triangular shell elements, the objective of this paper is to show that for certain stability problems it is interesting to choose a local element frame invariant to the element node ordering. Two methods of obtaining such a local frame are presented. These two methods, already proposed by other authors, are reformulated. For the first one, based on the minimisation of local nodal displacements, it is shown that the iterative process can be avoided. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:819 / 825
页数:7
相关论文
共 50 条
  • [31] 5/6 Dofs CB shell elements based on the local frame of SE(3) group
    Zhang T.
    Liu C.
    Zhang Z.
    Liu S.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (03): : 746 - 761
  • [32] Flapping-Wing Structural Dynamics Formulation Based on a Corotational Shell Finite Element
    Chimakurthi, Satish K.
    Cesnik, Carlos E. S.
    Stanford, Bret K.
    AIAA JOURNAL, 2011, 49 (01) : 128 - 142
  • [33] A triangular finite shell element based on a fully nonlinear shell formulation
    E. M. B. Campello
    P. M. Pimenta
    P. Wriggers
    Computational Mechanics, 2003, 31 : 505 - 518
  • [34] Rotation-free triangular plate and shell elements
    Oñate, E
    Zárate, F
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (1-3) : 557 - 603
  • [35] Refined triangular discrete Mindlin flat shell elements
    G. Zengjie
    C. Wanji
    Computational Mechanics, 2003, 33 : 52 - 60
  • [36] Development of MITC isotropic triangular shell finite elements
    Lee, PS
    Bathe, KJ
    COMPUTERS & STRUCTURES, 2004, 82 (11-12) : 945 - 962
  • [37] Rotation-free triangular plate and shell elements
    Oñate, Eugenio
    Zárate, Francisco
    International Journal for Numerical Methods in Engineering, 2000, 47 (01) : 557 - 603
  • [38] A corotational flat triangular element for large strain analysis of thin shells with application to soft biological tissues
    Caselli, Federica
    Bisegna, Paolo
    COMPUTATIONAL MECHANICS, 2014, 54 (03) : 847 - 864
  • [39] Refined triangular discrete Mindlin flat shell elements
    Zengjie, G
    Wanji, C
    COMPUTATIONAL MECHANICS, 2003, 33 (01) : 52 - 60
  • [40] IMPROVEMENTS IN 3-NODE TRIANGULAR SHELL ELEMENTS
    CARPENTER, N
    STOLARSKI, H
    BELYTSCHKO, T
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (09) : 1643 - 1667